Ex 7.2, 38 (MCQ) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important You are here
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 38 β«1β(γ10π₯γ^9+γ10γ^π₯ log_πβ‘10)/(π₯10+ 10π₯) dx equals (A) 10π₯ β π₯^10 + πΆ (B) 10π₯+π₯^10+πΆ (C) (10π₯ β π₯^10 )^(β1) + πΆ (D) logβ‘(10π₯+π₯10) + πΆ Let π₯10+ 10π₯= π‘ Differentiating both sides π€.π.π‘.π₯ γ10π₯γ^(10β1)+γ10γ^π₯ πππβ‘10= ππ‘/ππ₯ γ10π₯γ^9+γ10γ^π₯ πππβ‘10= ππ‘/ππ₯ ππ₯= ππ‘/(γ10π₯γ^9 + γ10γ^π₯ πππβ‘10 ) (Using (π^π₯ )^β²=π^π₯ πππβ‘π) Now, our function becomes β«1βγ" " (10π₯γ9+10γ^π₯ πππβ‘10)/(π₯^10 + γ10γ^π₯ )γ . ππ₯ Putting (π₯^10+ γ10γ^π₯ )=π‘ & ππ₯=" " ππ‘/(γ10π₯γ^9 + γ10γ^π₯ πππβ‘10 ) = β«1βγ" " (10π₯γ9+10γ^π₯ πππβ‘10)/π‘γ . ππ‘/(γ10π₯γ^9+γ10γ^π₯ πππβ‘10 ) " " = β«1βγ" " 1/π‘γ.ππ‘ = log |π‘|+πΆ = log |γ10γ^π₯+ π₯^10 |+πΆ = log (γ10γ^π₯+ π₯^10 )+πΆ β΄ Option D is correct. (Using π‘=γ10γ^π₯+π₯^10) (As 10x and x10 are positive)