
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important You are here
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.2, 20 Integrate the function (𝑒^2𝑥 − 𝑒^(−2𝑥))/(𝑒^2𝑥 + 𝑒^(−2𝑥) ) Let 𝑒^2𝑥 + 𝑒^(−2𝑥)= 𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 𝑒^2𝑥. 𝑑(2𝑥)/𝑑𝑥 +𝑒^(−2𝑥) 𝑑(−2𝑥)/𝑑𝑥= 𝑑𝑡/𝑑𝑥 〖2𝑒〗^2𝑥−〖2𝑒〗^(−2𝑥)= 𝑑𝑡/𝑑𝑥 2(𝑒^2𝑥−𝑒^(−2𝑥) )=𝑑𝑡/𝑑𝑥 " " 𝑑𝑥 = 𝑑𝑡/2(𝑒^2𝑥− 𝑒^(−2𝑥) ) Integrating the function ∫1▒〖" " (𝑒^2𝑥 − 𝑒^(−2𝑥))/(𝑒^2𝑥 + 𝑒^(−2𝑥) )〗. 𝑑𝑥 Putting 𝑒^2𝑥 + 𝑒^(−2𝑥)=𝑡 & 𝑑𝑥=𝑑𝑡/2(𝑒^2𝑥− 𝑒^(−2𝑥) ) = ∫1▒〖" " (𝑒^2𝑥 − 𝑒^(−2𝑥))/𝑡〗. 𝑑𝑡/2(𝑒^2𝑥− 𝑒^(−2𝑥) ) = ∫1▒〖" " 1/2𝑡〗. 𝑑𝑡 = 1/2 ∫1▒1/𝑡. 𝑑𝑡 = 1/2 log〖 |𝑡|〗+𝐶 = 1/2 log〖 |𝑒^2𝑥 + 𝑒^(−2𝑥) |〗+𝐶 = 𝟏/𝟐 𝒍𝒐𝒈〖 (𝒆^𝟐𝒙 + 𝒆^(−𝟐𝒙) )〗+𝑪 (Using ∫1▒1/𝑥. 𝑑𝑥=𝑙𝑜𝑔|𝑥| ) (Using 𝑡=𝑒^2𝑥 + 𝑒^(−2𝑥)) (∴ 𝑒^2𝑥+𝑒^(−2𝑥)>0 )