
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35 You are here
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.2, 35 1 + log𝑥2𝑥 Step 1: Let 1+ log𝑥= 𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0+ 1𝑥= 𝑑𝑡𝑑𝑥 1𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑥 . 𝑑𝑡 Step 2: Integrating the function 1 + log𝑥2𝑥. 𝑑𝑥 Putting 1− 𝑙𝑜𝑔𝑥=𝑡 & 𝑑𝑥=𝑥 . 𝑑𝑡 = 𝑡2𝑥 . 𝑥 . 𝑑𝑡 = 𝑡2. 𝑑𝑡 = 𝑡2 + 12 + 1 +𝐶 = 𝑡33 +𝐶 = 𝟏𝟑 𝟏+ 𝒍𝒐𝒈𝒙𝟑+𝑪