


Last updated at Dec. 11, 2018 by Teachoo
Transcript
Ex 7.2, 12 Integrate the function: (๐ฅ3 โ 1)^(1/3) . ๐ฅ5 (๐ฅ3 โ 1)^(1/3) . ๐ฅ5 Step 1: Let ๐ฅ3= ๐ก Differentiating both sides ๐ค.๐.๐ก.๐ฅ 3๐ฅ^2= ๐๐ก/๐๐ฅ 3๐ฅ^2. d๐ฅ=๐๐ก ๐๐ฅ = ๐๐ก/(3๐ฅ^2 ) Step 2: Integrating the function โซ1โใ" " (๐ฅ3 โ 1)^(1/3) . ๐ฅ5" " ใ . ๐๐ฅ Putting the value of ๐ฅ^3 & ๐๐ฅ=๐๐ก/(3๐ฅ^2 ) = โซ1โใ" " (๐ก โ 1)^(1/3) . ๐ฅ5ใ . ๐๐ก/(3๐ฅ^2 ) = โซ1โใ" " (๐ก โ 1)^(1/3) . ๐ฅ^2. ๐ฅ^3 ใ. ๐๐ก/(3๐ฅ^2 ) = โซ1โใ" " (๐ก โ 1)^(1/3) ใ . ๐ฅ^3/3 . ๐๐ก = โซ1โใ" " (๐ก โ 1)^(1/3) ใ . ๐ก/3 . ๐๐ก = 1/3 โซ1โใ" " (๐ก โ 1)^(1/3) ใ . ๐ก . ๐๐ก = 1/3 โซ1โใ" " (๐ก โ 1)^(1/3) ใ . (๐กโ1+1) ๐๐ก = 1/3 โซ1โใ" " (๐ก โ 1)^(1/3) ใ . ((๐กโ1)+1) ๐๐ก = 1/3 โซ1โ((๐ก โ 1)^(1/3) (๐กโ1)+(๐กโ1)^(1/3) ) ๐๐ก = 1/3 โซ1โ((๐ก โ 1)^(1/3 +1)+(๐กโ1)^(1/3) ) ๐๐ก = 1/3 โซ1โ((๐ก โ 1)^(4/3 )+(๐กโ1)^(1/3) ) ๐๐ก = 1/3 โซ1โใ (๐ก โ 1)^(4/3 ). ๐๐กใ + 1/3 โซ1โใ (๐ก โ 1)^(1/3 ). ๐๐กใ = 1/3 โซ1โใ (๐ก โ1)^(4/3 ). ๐๐กใ + 1/3 โซ1โใ (๐ก โ1)^(1/3 ). ๐๐กใ = 1/3 (๐ก โ1)^(4/3 + 1)/(4/3 + 1) + 1/3 (๐ก โ1)^(1/3 + 1)/(1/3 + 1) + ๐ถ = 1/3 (๐ก โ 1)^(7/3)/(7/3) + 1/3 (๐ก โ 1)^(4/3)/(4/3) + ๐ถ = 1/7 (๐กโ1)^(7/3) +1/4 (๐กโ1)^(4/3) +๐ถ = ๐/๐ (๐^๐ โ๐)^(๐/๐) + ๐/๐ (๐^๐โ๐)^(๐/๐) + ๐ช
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10
Ex 7.2, 11 Important
Ex 7.2, 12 You are here
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37 Important
Ex 7.2, 38 Important
Ex 7.2, 39 Important
About the Author