

Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important You are here
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Ex 7.2, 7 Integrate the function: π₯β(π₯+2) π₯β(π₯+2) Step 1: Let (π₯+2)=π‘ Differentiating both sides π€.π.π‘.π₯ 1+0 = ππ‘/ππ₯ 1= ππ‘/ππ₯ ππ₯=ππ‘ Step 2: Integrating the function β«1βγ" " π₯β(π₯+2)γ .ππ₯ Putting the value of π₯+2 & ππ₯ . = β«1βγπ₯βπ‘γ .ππ₯ = β«1βγπ₯βπ‘γ .ππ‘ = β«1βγ(π‘β2) βπ‘γ .ππ‘ = β«1βγ(π‘β2) π‘^(1/2) γ .ππ‘ = β«1β(π‘.π‘^(1/2)β2.π‘^(1/2) ) .ππ‘ = β«1β(π‘^(3/2)β2.π‘^(1/2) ) .ππ‘ = β«1βπ‘^(3/2) .ππ‘ β 2β«1βπ‘^(1/2) .ππ‘ (Using π₯+2=π‘, π₯=π‘β2) = π‘^(3/2 + 1)/(3/2 + 1) β 2 . π‘^(1/2 + 1)/(1/2 + 1) + πΆ = π‘^(5/2)/(5/2) β 2 . π‘^(3/2)/(3/2) + πΆ = 2/5 π‘^(5/2) β 2 Γ 2/3 π‘^(3/2) + πΆ = 2/5 π‘^(5/2) β 4/3 π‘^(3/2) + πΆ Putting back π‘=π₯+2 = π/π (π+π)^(π/π) β π/π (π+π)^(π/π) + πͺ (Using β«1βπ₯^π . ππ₯=π₯^(π+1)/(π +1) )