Ex 7.2, 7 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important You are here
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 7 Integrate the function: ๐ฅโ(๐ฅ+2) ๐ฅโ(๐ฅ+2) Step 1: Let (๐ฅ+2)=๐ก Differentiating both sides ๐ค.๐.๐ก.๐ฅ 1+0 = ๐๐ก/๐๐ฅ 1= ๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก Step 2: Integrating the function โซ1โใ" " ๐ฅโ(๐ฅ+2)ใ .๐๐ฅ Putting the value of ๐ฅ+2 & ๐๐ฅ . = โซ1โใ๐ฅโ๐กใ .๐๐ฅ = โซ1โใ๐ฅโ๐กใ .๐๐ก = โซ1โใ(๐กโ2) โ๐กใ .๐๐ก = โซ1โใ(๐กโ2) ๐ก^(1/2) ใ .๐๐ก = โซ1โ(๐ก.๐ก^(1/2)โ2.๐ก^(1/2) ) .๐๐ก = โซ1โ(๐ก^(3/2)โ2.๐ก^(1/2) ) .๐๐ก = โซ1โ๐ก^(3/2) .๐๐ก โ 2โซ1โ๐ก^(1/2) .๐๐ก (Using ๐ฅ+2=๐ก, ๐ฅ=๐กโ2) = ๐ก^(3/2 + 1)/(3/2 + 1) โ 2 . ๐ก^(1/2 + 1)/(1/2 + 1) + ๐ถ = ๐ก^(5/2)/(5/2) โ 2 . ๐ก^(3/2)/(3/2) + ๐ถ = 2/5 ๐ก^(5/2) โ 2 ร 2/3 ๐ก^(3/2) + ๐ถ = 2/5 ๐ก^(5/2) โ 4/3 ๐ก^(3/2) + ๐ถ Putting back ๐ก=๐ฅ+2 = ๐/๐ (๐+๐)^(๐/๐) โ ๐/๐ (๐+๐)^(๐/๐) + ๐ช (Using โซ1โ๐ฅ^๐ . ๐๐ฅ=๐ฅ^(๐+1)/(๐ +1) )