Slide29.JPG

Slide30.JPG

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

Transcript

Ex 7.2, 26 Integrate the function cos⁑√π‘₯/√π‘₯ Let √π‘₯=𝑑 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ (1/2) π‘₯^(1/2 βˆ’ 1)= 𝑑𝑑/𝑑π‘₯ 1/2. π‘₯^(βˆ’ 1/2)= 𝑑𝑑/𝑑π‘₯ 1/(2√π‘₯) = 𝑑𝑑/𝑑π‘₯ 𝑑π‘₯ =2√π‘₯ . 𝑑𝑑 𝑑π‘₯ =2𝑑 . 𝑑𝑑 Integrating the function ∫1β–’γ€–" " cos⁑√π‘₯/√π‘₯ " " γ€—. 𝑑π‘₯ Putting √π‘₯=𝑑 & 𝑑π‘₯=2𝑑 . 𝑑𝑑 = ∫1β–’γ€–" " cos⁑𝑑/𝑑〗. 2𝑑 . 𝑑𝑑 = ∫1β–’γ€–" " 2 cos⁑𝑑 γ€—. 𝑑𝑑 = 2∫1β–’cos⁑𝑑 . 𝑑𝑑 = 2 sin⁑𝑑+𝐢 = 𝟐 π’”π’Šπ’β‘βˆšπ’™+π‘ͺ (π‘ˆπ‘ π‘–π‘›π‘” 𝑑=√π‘₯)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.