Ex 7.2, 14 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important You are here
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 14 Integrate the function: 1/(𝑥(log𝑥 )^𝑚 ) , 𝑥 > 0 Step 1: Let log𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 1/𝑥= 𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑥 . 𝑑𝑡 Step 2: Integrating the function ∫1▒〖" " 1/(𝑥(log𝑥 )^𝑚 )〗 . 𝑑𝑥 Putting 𝑙𝑜𝑔𝑥=𝑡 & 𝑑𝑥=𝑥 . 𝑑𝑡 = ∫1▒〖" " 1/(𝑥 . 𝑡^𝑚 )〗 . 𝑥 𝑑𝑡 = ∫1▒〖" " 1/𝑡^𝑚 〗 . 𝑑𝑡 = ∫1▒〖" " 𝑡^(−𝑚) 〗 . 𝑑𝑡 = 𝑡^(−𝑚 + 1)/(−𝑚 +1) +𝐶 = 𝑡^(1 − 𝑚)/(1 − 𝑚) +𝐶 Putting back t = log x = (𝒍𝒐𝒈𝒙 )^(𝟏 − 𝒎)/(𝟏 − 𝒎) +𝑪 (Using ∫1▒𝑥^𝑛 . 𝑑𝑥=𝑥^(𝑛+1)/(𝑛 +1))