

Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31 You are here
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Ex7.2, 31 sin𝑥 1+ cos𝑥2 Step 1: Let 1+ cos𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 0−sin 𝑥= 𝑑𝑡𝑑𝑥 − sin 𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑑𝑡− sin 𝑥 Step 2: Integrating the function sin𝑥 1+ cos𝑥2 . 𝑑𝑥 putting 1+ 𝑐𝑜𝑠𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡− sin 𝑥 = sin𝑥 𝑡2 . 𝑑𝑡− sin 𝑥 = 1− 𝑡2 = −1 1 𝑡2 . 𝑑𝑡 = −1 𝑡−2 +1−2 +1 +𝐶 = −1 𝑡−1−1 +𝐶 = 𝑡−1 +𝐶 = 1𝑡 +𝐶 = 𝟏𝟏+ 𝒄𝒐𝒔𝒙 +𝑪