
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at Dec. 11, 2021 by Teachoo
Ex 7.3, 1 Find the integral of sin2 (2π₯ + 5) β«1βγππππ (ππ + π) γ π π =β«1β(1 β γπππ 2γβ‘(2π₯ + 5))/2 ππ₯ =1/2 β«1βγ1βcosβ‘(4π₯+10) γ ππ₯ =1/2 [β«1β1 ππ₯ββ«1βcosβ‘(4π₯+10) ππ₯] We know that ππ¨π¬ ππ½=πβπ γπππγ^πβ‘π½ 2 sin^2 π=1βcosβ‘2π sin^2 π=1/2 [1βcosβ‘2π ] Replace π by (ππ±+π) sin^2 (2π₯+5)=(1 β cosβ‘2(2π₯ + 5))/2 As β«1βcosβ‘(ππ₯+π) ππ₯=sinβ‘(ππ₯ + π)/π+πΆ =1/2 [π₯β sinβ‘(4π₯ + 10)/4 +πΆ] =π/π β π/π πππβ‘(ππ+ππ)+πͺ