Check sibling questions

Slide5.JPG

Slide6.JPG


Transcript

Ex 7.3, 1 Find the integral of sin2 (2π‘₯ + 5) ∫1β–’γ€–π’”π’Šπ’πŸ (πŸπ’™ + πŸ“) γ€— 𝒅𝒙 =∫1β–’(1 βˆ’ γ€–π‘π‘œπ‘  2〗⁑(2π‘₯ + 5))/2 𝑑π‘₯ =1/2 ∫1β–’γ€–1βˆ’cos⁑(4π‘₯+10) γ€— 𝑑π‘₯ =1/2 [∫1β–’1 𝑑π‘₯βˆ’βˆ«1β–’cos⁑(4π‘₯+10) 𝑑π‘₯] We know that 𝐜𝐨𝐬 𝟐𝜽=πŸβˆ’πŸ γ€–π’”π’Šπ’γ€—^𝟐⁑𝜽 2 sin^2 πœƒ=1βˆ’cos⁑2πœƒ sin^2 πœƒ=1/2 [1βˆ’cos⁑2πœƒ ] Replace πœƒ by (𝟐𝐱+πŸ“) sin^2 (2π‘₯+5)=(1 βˆ’ cos⁑2(2π‘₯ + 5))/2 As ∫1β–’cos⁑(π‘Žπ‘₯+𝑏) 𝑑π‘₯=sin⁑(π‘Žπ‘₯ + 𝑏)/π‘Ž+𝐢 =1/2 [π‘₯βˆ’ sin⁑(4π‘₯ + 10)/4 +𝐢] =𝒙/𝟐 βˆ’ 𝟏/πŸ– π’”π’Šπ’β‘(πŸ’π’™+𝟏𝟎)+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.