


Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important You are here
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at March 23, 2023 by Teachoo
Ex 7.3, 19 Integrate the function 1/(sinβ‘π₯ . cos^3β‘π₯ ) β«1β1/(sinβ‘π₯ . cos^3β‘π₯ ) ππ₯ =β«1β(sin^2β‘π₯ + cos^2β‘π₯)/(sinβ‘π₯ . cos^3β‘π₯ ) ππ₯ =β«1β(sin^2β‘π₯/(sinβ‘π₯ . cos^3β‘π₯ )+cos^2β‘π₯/(sinβ‘π₯ . cos^3β‘π₯ )) ππ₯ =β«1β(π ππβ‘π₯/cos^3β‘π₯ +πππ β‘π₯/(sinβ‘π₯ . cos^2β‘π₯ )) ππ₯ =β«1β(π ππβ‘π₯/πππ β‘π₯ Γ1/cos^2β‘π₯ +πππ β‘π₯/sinβ‘π₯ Γ1/cos^2β‘π₯ ) ππ₯ =β«1βγ1/cos^2β‘π₯ (π ππβ‘π₯/πππ β‘π₯ +πππ β‘π₯/sinβ‘π₯ ) γ ππ₯ (As γπ ππγ^2β‘π+γπππ γ^2β‘π=1) =β«1βγsec^2β‘π₯ (tanβ‘π₯+cotβ‘π₯ ) γ ππ₯ =β«1βγsec^2β‘π₯ (tanβ‘π₯+1/tanβ‘π₯ ) γ ππ₯ =β«1βγ(tanβ‘π₯+1/tanβ‘π₯ ). sec^2β‘π₯ γ ππ₯ Putting π‘ππβ‘π₯=π‘ Differentiating w.r.t.x sec^2β‘π₯=ππ‘/ππ₯ ππ₯=1/sec^2β‘π₯ ππ‘ Thus, our equation becomes =β«1βγ(π‘+1/π‘) sec^2β‘π₯Γ1/sec^2β‘π₯ γ ππ‘ =β«1β(π‘+1/π‘) ππ‘ =β«1βπ‘ ππ‘+β«1β1/π‘ ππ‘ =π‘^2/2 +logβ‘|π‘|+πΆ Putting value of π‘=π‘ππβ‘π₯ =(γπ‘ππγ^2 π₯)/2+πππβ‘|π‘ππβ‘π₯ |+πΆ =πππβ‘|πππβ‘π |+(γπππγ^π π)/π +πͺ