Check sibling questions

Ex 7.3, 19 - Integrate 1 / sin x. cos3 x - Chapter 7 - Ex 7.3

Ex 7.3, 19 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.3, 19 - Chapter 7 Class 12 Integrals - Part 3

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 7.3, 19 Integrate the function 1/(sin⁑π‘₯ . cos^3⁑π‘₯ ) ∫1β–’1/(sin⁑π‘₯ . cos^3⁑π‘₯ ) 𝑑π‘₯ =∫1β–’(sin^2⁑π‘₯ + cos^2⁑π‘₯)/(sin⁑π‘₯ . cos^3⁑π‘₯ ) 𝑑π‘₯ =∫1β–’(sin^2⁑π‘₯/(sin⁑π‘₯ . cos^3⁑π‘₯ )+cos^2⁑π‘₯/(sin⁑π‘₯ . cos^3⁑π‘₯ )) 𝑑π‘₯ =∫1β–’(𝑠𝑖𝑛⁑π‘₯/cos^3⁑π‘₯ +π‘π‘œπ‘ β‘π‘₯/(sin⁑π‘₯ . cos^2⁑π‘₯ )) 𝑑π‘₯ =∫1β–’(𝑠𝑖𝑛⁑π‘₯/π‘π‘œπ‘ β‘π‘₯ Γ—1/cos^2⁑π‘₯ +π‘π‘œπ‘ β‘π‘₯/sin⁑π‘₯ Γ—1/cos^2⁑π‘₯ ) 𝑑π‘₯ =∫1β–’γ€–1/cos^2⁑π‘₯ (𝑠𝑖𝑛⁑π‘₯/π‘π‘œπ‘ β‘π‘₯ +π‘π‘œπ‘ β‘π‘₯/sin⁑π‘₯ ) γ€— 𝑑π‘₯ (As 〖𝑠𝑖𝑛〗^2β‘πœƒ+γ€–π‘π‘œπ‘ γ€—^2β‘πœƒ=1) =∫1β–’γ€–sec^2⁑π‘₯ (tan⁑π‘₯+cot⁑π‘₯ ) γ€— 𝑑π‘₯ =∫1β–’γ€–sec^2⁑π‘₯ (tan⁑π‘₯+1/tan⁑π‘₯ ) γ€— 𝑑π‘₯ =∫1β–’γ€–(tan⁑π‘₯+1/tan⁑π‘₯ ). sec^2⁑π‘₯ γ€— 𝑑π‘₯ Putting π‘‘π‘Žπ‘›β‘π‘₯=𝑑 Differentiating w.r.t.x sec^2⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=1/sec^2⁑π‘₯ 𝑑𝑑 Thus, our equation becomes =∫1β–’γ€–(𝑑+1/𝑑) sec^2⁑π‘₯Γ—1/sec^2⁑π‘₯ γ€— 𝑑𝑑 =∫1β–’(𝑑+1/𝑑) 𝑑𝑑 =∫1▒𝑑 𝑑𝑑+∫1β–’1/𝑑 𝑑𝑑 =𝑑^2/2 +log⁑|𝑑|+𝐢 Putting value of 𝑑=π‘‘π‘Žπ‘›β‘π‘₯ =(γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/2+π‘™π‘œπ‘”β‘|π‘‘π‘Žπ‘›β‘π‘₯ |+𝐢 =π’π’π’ˆβ‘|𝒕𝒂𝒏⁑𝒙 |+(〖𝒕𝒂𝒏〗^𝟐 𝒙)/𝟐 +π‘ͺ

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.