Ex 7.3, 6 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important You are here
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 6 π ππ π₯ sinβ‘2π₯ sinβ‘3π₯ β«1βsinβ‘γπ₯ sinβ‘γ2π₯ sinβ‘3π₯ γ γ ππ₯ =β«1βγ(sinβ‘π₯ sinβ‘2π₯ ) sinβ‘3π₯ γ ππ₯ We know that 2 sinβ‘π΄ sinβ‘π΅=βcosβ‘(π΄+π΅)+cosβ‘(π΄βπ΅) sinβ‘π΄ sinβ‘π΅=1/2 [βcosβ‘(π΄+π΅)+cosβ‘(π΄βπ΅) ] sinβ‘π΄ sinβ‘π΅=1/2 [cosβ‘(π΄βπ΅)βcosβ‘(π΄+π΅) ] Replace A by π₯ & B by 2π₯ sinβ‘π₯ sinβ‘2π₯=1/2 [cosβ‘(π₯β2π₯)βcosβ‘(π₯+2π₯) ] sinβ‘π₯ sinβ‘2π₯ =1/2 [cosβ‘(βπ₯)βcosβ‘(3π₯) ] sinβ‘π₯ sinβ‘2π₯ =1/2 [cosβ‘γ π₯γβcosβ‘3π₯ ] Thus, our equation becomes β«1βπ¬π’π§β‘γπ π¬π’π§β‘ππ sinβ‘3π₯ γ ππ₯ =β«1βγπ/π (πππβ‘πβπππβ‘ππ ) γ . sinβ‘3π₯.ππ₯ =1/2 β«1β(cosβ‘π₯βcosβ‘3π₯ ) sinβ‘3π₯ ππ₯ =1/2 [β«1β(cosβ‘π₯. sinβ‘3π₯βcosβ‘3π₯. sinβ‘3π₯ ) ]ππ₯ =1/2 [β«1βγcosβ‘π₯. sinβ‘3π₯ γ ππ₯ββ«1βγcosβ‘3π₯. sinβ‘3π₯ γ ππ₯] (β΅πππ β‘(βπ₯)=πππ β‘π₯) β«1βγπππβ‘π. πππβ‘ππ γ π π We know that 2 π ππβ‘π΄ πππ β‘π΅ =π ππβ‘(π΄+π΅)+π ππβ‘(π΄βπ΅) π ππβ‘π΄ πππ β‘π΅=1/2 [π ππβ‘(π΄+π΅)+π ππβ‘(π΄βπ΅) ] Replace A by 3π₯ & B by π₯ sinβ‘3π₯ cosβ‘π₯ = 1/2 [π ππβ‘(π₯+3π₯)+sinβ‘(3π₯βπ₯) ] = 1/2 [π ππβ‘4π₯+sinβ‘2π₯ ] β«1βγπππβ‘ππ. πππβ‘ππ γ π π We know that 2 π ππβ‘π΄ πππ β‘π΅ =π ππβ‘(π΄+π΅)+π ππβ‘(π΄βπ΅) π ππβ‘π΄ πππ β‘π΅ =1/2 [π ππβ‘(π΄+π΅)+π ππβ‘(π΄βπ΅) ] Replace A by 3π₯ & B by 3π₯ sinβ‘3π₯ cosβ‘3π₯ = 1/2 [π ππβ‘(3π₯+3π₯)+sinβ‘(3π₯β3π₯) ] = 1/2 [π ππβ‘6π₯+sinβ‘0 ] =1/2 [π ππβ‘6π₯ ] Hence β«1βγsinβ‘3π₯.cosβ‘π₯ γ ππ₯ =1/2 β«1β[π ππβ‘4π₯+sinβ‘2π₯ ] ππ₯ Hence β«1βγcosβ‘3π₯.sinβ‘3π₯ γ ππ₯ =1/2 β«1βsinβ‘6π₯ ππ₯ Thus, our equation becomes β«1βsinβ‘γπ₯ sinβ‘γ2π₯ sinβ‘3π₯ γ γ ππ₯ =1/2 [β«1βγsinβ‘3π₯ cosβ‘3π₯ γ ππ₯ββ«1βγsinβ‘3π₯ cosβ‘3π₯ γ ππ₯] =1/2 [1/2 β«1β(sinβ‘4π₯+sinβ‘2π₯ ) ππ₯β1/2 β«1β(sinβ‘6π₯ ) ππ₯] =1/4 [β«1β(sinβ‘4π₯+sinβ‘2π₯ ) ππ₯ββ«1β(sinβ‘6π₯ ) ππ₯] =1/4 [β«1βsinβ‘4π₯ ππ₯+β«1βsinβ‘2π₯ ππ₯ββ«1βsinβ‘6π₯ ππ₯] β«1βsinβ‘(ππ₯+π) ππ₯=βπππ β‘(ππ₯ + π)/π +πΆ =1/4 [(βcosβ‘4π₯)/4 +(γβcosγβ‘2π₯/2) β((βcosβ‘6π₯)/6)]+πΆ =1/4 [(βcosβ‘4π₯)/4 βcosβ‘2π₯/2+cosβ‘6π₯/6]+πΆ =π/π [πππβ‘ππ/π βπππβ‘ππ/π β πππβ‘ππ/π ]+πͺ