Ex 7.3, 4 - Integrate sin3 (2x + 1) - Chapter 7 Class 12

Ex 7.3, 4 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.3, 4 - Chapter 7 Class 12 Integrals - Part 3


Transcript

Ex 7.3, 4 sin3 (2π‘₯ + 1) We know that sin⁑3πœƒ=3 sinβ‘πœƒβˆ’4 sin^3β‘πœƒ 4 sin^3β‘πœƒ=3 sinβ‘πœƒβˆ’sin⁑3πœƒ sin^3β‘πœƒ=(3 sinβ‘πœƒ βˆ’ sin⁑3πœƒ)/4 Replace πœƒ by πŸπ’™+𝟏 sin^3⁑(2π‘₯+1)=(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑3(2π‘₯ + 1))/4 sin^3⁑(2π‘₯+1)=(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑(6π‘₯ + 3))/4 Thus, our equation becomes . ∫1β–’γ€–sin3 (2π‘₯+1) γ€— 𝑑π‘₯ =∫1β–’(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑(6π‘₯ + 3))/4 𝑑π‘₯ =1/4 ∫1β–’(3 sin⁑(2π‘₯+1)βˆ’sin⁑(6π‘₯+3) ) 𝑑π‘₯ =1/4 [3∫1β–’sin⁑(2π‘₯+1) 𝑑π‘₯βˆ’βˆ«1β–’sin⁑(6π‘₯+3) 𝑑π‘₯] =1/4 [3•×1/2 (βˆ’cos⁑(2π‘₯+1) )βˆ’1/6 (βˆ’cos⁑(6π‘₯+3)+𝐢)" " ] =1/4 [(βˆ’3)/2 cos⁑(2π‘₯+1)+1/6 cos⁑(6π‘₯+3) ]+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/24 π’„π’π’”β‘πŸ‘(πŸπ’™+𝟏)+𝐢 ∫1β–’sin⁑(π‘Žπ‘₯+𝑏) 𝑑π‘₯=βˆ’γ€–π‘π‘œπ‘  〗⁑(π‘Žπ‘₯ + 𝑏)/π‘Ž +𝐢 We know that π‘π‘œπ‘ β‘3πœƒ=4 γ€–π‘π‘œπ‘ γ€—^3β‘πœƒβˆ’3 π‘π‘œπ‘ β‘πœƒ Replace πœƒ by 2π‘₯+1 π‘π‘œπ‘ β‘3(2π‘₯+1)=4 γ€–π‘π‘œπ‘ γ€—^3⁑(2π‘₯+1)βˆ’3 π‘π‘œπ‘ β‘(2π‘₯+1) =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/24 [πŸ’ 〖𝒄𝒐𝒔〗^πŸ‘β‘(πŸπ’™+𝟏)βˆ’πŸ‘ 𝒄𝒐𝒔⁑(πŸπ’™+𝟏) ]+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+4/24 cos^3⁑(2π‘₯+1)βˆ’3/24 cos⁑(2π‘₯+1)+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)βˆ’1/8 cos⁑(2π‘₯+1)+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)βˆ’1/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)+𝐢 =(βˆ’4)/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)+𝐢 =(βˆ’πŸ)/𝟐 𝒄𝒐𝒔⁑(πŸπ’™+𝟏)+𝟏/πŸ” 〖𝒄𝒐𝒔〗^πŸ‘β‘(πŸπ’™+𝟏)+π‘ͺ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.