Ex 7.3, 16 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important You are here
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 16 β«1βγtan^4 π₯γ ππ₯ β«1βγtan^4 π₯γ ππ₯=β«1βγtan^2 π₯ .tan^2 π₯γ ππ₯ =β«1βγ(sec^2β‘π₯β 1) tan^2β‘π₯ γ ππ₯ =β«1β(sec^2β‘π₯.tan^2β‘π₯βtan^2β‘π₯ ) ππ₯ =β«1βγtan^2β‘π₯.sec^2β‘π₯ γ ππ₯ββ«1βγtan^2 π₯γ ππ₯ Solving both these integrals separately We know that γπ‘ππγ^2 π=γπ ππγ^2β‘γπβ1γ β«1βγγπππγ^πβ‘π.γπππγ^πβ‘π γ π π Let tan π₯=π‘ sec^2β‘π₯=ππ‘/ππ₯ ππ₯=1/sec^2β‘π₯ . ππ‘ Now, β«1βtan^2β‘π₯ .sec^2β‘π₯.ππ₯ =β«1βπ‘^2 .sec^2β‘π₯. 1/sec^2β‘π₯ .ππ‘ =β«1βπ‘^2 . ππ‘ =π‘^(2 + 1)/(2 + 1) + C =π‘^3/3+πΆ Putting value of π‘=π‘ππβ‘π₯ =tan^3β‘π₯/3+πΆ1 β«1βγγπππγ^π πγ π π =β«1β(sec^2β‘π₯β1) ππ₯ =β«1βsec^2β‘π₯ ππ₯ββ«1β1β‘γ.ππ₯γ =tanβ‘π₯βπ₯+πΆ2 "As" β«1βγπ₯^π ππ₯=π₯^(π+1)/(π+1)+πΆγ & β«1βsec^2β‘π₯ ππ₯=tanβ‘π₯+πΆ Now, β«1βγtan^4 π₯γ ππ₯=β«1βγtan^2 π₯ .sec^2 π₯γ ππ₯ββ«1βγtan^2 π₯γ ππ₯ =tan^3β‘π₯/3+πΆ1β(tanβ‘π₯βπ₯+πΆ2) =tan^3β‘π₯/3 βtanβ‘π₯+π₯+πΆ1βπΆ2 =γπππγ^πβ‘π/π βπππβ‘π+π+πͺ (Where πΆ=πΆ1βπΆ2)