Chapter 7 Class 12 Integrals
Serial order wise

Odd functionΒ  f(x) = -f(x)Β 

Even functionΒ  g(x) = g(x)Β 

Based on the above information, answer any fourΒ  of the following questions.

Case Based MCQ - Integrals Class 7 - Odd function f(x) = -f(x) Even fu - Case Based Questions (MCQ)

Question 1

∫ 1 (-1)  x 99    dx=______________.

(a) 0 Β  (b) 1Β  (c) βˆ’1Β  (d) 2

part 2 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 2

∫ Ο€ -Ο€ x cos x dx =______________.

(a) 1 Β  (b) 0Β  Β  Β  (c) βˆ’1Β  Β  Β  (d) Ο€/2

part 3 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 3

∫ Ο€/2 -Ο€/2 Β  sin 3 π‘₯ 𝑑π‘₯ = _________.

(a) 1Β  Β  (b) 0Β  Β  Β (c) βˆ’1Β  Β  Β (d) Ο€

part 4 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Β 

Question 4

∫ Ο€ -Ο€ Β  π‘₯ sin π‘₯ 𝑑π‘₯ = _________.

(a) π  Β  Β  (b) 0Β  Β  Β  Β  Β  Β (c) 2π  Β  Β  Β  Β  Β  (d) Ο€/2

part 5 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Question 5

∫ Ο€ -Ο€ Β  tanπ‘₯ sec 2 π‘₯ 𝑑π‘₯ = _________.

(a) 1Β  Β  Β  Β  Β  Β  (b) βˆ’1Β  Β  Β  Β  Β  (c) 0Β  Β  Β  Β  Β  Β  (d) 2

part 8 - Question 1 - Case Based Questions (MCQ) - Serial order wise - Chapter 7 Class 12 Integrals

Remove Ads

Transcript

Question 1 Based on the above information, answer any four of the following questions. Question 1 ∫1_(βˆ’1)^1β–’π‘₯^99 𝑑π‘₯=______________. (a) 0 (b) 1 (c) βˆ’1 (d) 2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯^99 𝒇(βˆ’π’™)=(βˆ’π‘₯)^99=βˆ’π‘₯^99 Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’1)^1β–’π‘₯^99 𝑑𝒙= 0 So, the correct answer is (a) Question 2 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€– π‘₯ cos⁑π‘₯ γ€— 𝑑π‘₯=______________. (a) 1 (b) 0 (c) βˆ’1 (d) πœ‹/2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯ π‘π‘œπ‘  π‘₯ 𝒇(βˆ’π’™)=(βˆ’π‘₯) cos⁑〖(βˆ’π‘₯)γ€—=βˆ’π‘₯ cos⁑π‘₯ Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’πœ‹)^πœ‹β–’γ€– π‘₯ cos⁑π‘₯ γ€— 𝑑π‘₯= 0 So, the correct answer is (b) Question 3 ∫1_((βˆ’πœ‹)/2)^(πœ‹/2 )β–’γ€– sinγ€—^3⁑π‘₯ 𝑑π‘₯ = _________. (a) 1 (b) 0 (c) βˆ’1 (d) πœ‹ This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=sin^3⁑π‘₯ 𝒇(βˆ’π’™)=sin^3⁑〖(βˆ’π‘₯)γ€—=(βˆ’sin⁑π‘₯ )^3=βˆ’sin^3⁑π‘₯ Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_((βˆ’πœ‹)/2)^(πœ‹/2 )β–’γ€– sinγ€—^3⁑π‘₯ 𝑑π‘₯ = 0 So, the correct answer is (b) Question 4 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ = _________. (a) πœ‹ (b) 0 (c) 2πœ‹ (d) πœ‹/2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=π‘₯ 𝑠𝑖𝑛 π‘₯ 𝒇(βˆ’π’™)=(βˆ’π‘₯) 〖𝑠𝑖𝑛 〗⁑〖(βˆ’π‘₯)γ€—=βˆ’π‘₯ Γ— βˆ’sin⁑π‘₯=π‘₯ sin⁑〖π‘₯ γ€— Thus, 𝒇(βˆ’π’™) =𝒇⁑(𝒙) Therefore, ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ = 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ Let I = 𝟐∫1_𝟎^𝝅▒〖𝒙 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ I = 2∫1_0^πœ‹β–’γ€–(𝝅 βˆ’π’™) 𝑠𝑖𝑛 〗⁑〖(πœ‹ βˆ’π‘₯) γ€— 𝑑π‘₯ I = 2∫1_0^πœ‹β–’γ€–(πœ‹ βˆ’π‘₯) 𝑠𝑖𝑛 〗⁑〖π‘₯ γ€— 𝑑π‘₯ I = 𝟐∫1_𝟎^π…β–’γ€–πœ‹ π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ βˆ’ 𝟐∫1_𝟎^𝝅▒〖𝒙 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ Adding (1) and (2) I + I = 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ + 2∫1_0^πœ‹β–’γ€–πœ‹ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ βˆ’ 2∫1_0^πœ‹β–’γ€–π‘₯ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ 2I = 2∫1_0^πœ‹β–’γ€–πœ‹ 𝑠𝑖𝑛 〗⁑π‘₯ 𝑑π‘₯ I = ∫1_𝟎^𝝅▒〖𝝅 π’”π’Šπ’ 〗⁑𝒙 𝑑π‘₯ I = πœ‹βˆ«1_0^πœ‹β–’γ€–π‘ π‘–π‘› 〗⁑π‘₯ 𝑑π‘₯ I = 𝝅〖[βˆ’πœπ¨π¬β‘π’™]γ€—_𝟎^𝝅 I = πœ‹[βˆ’cosβ‘γ€–πœ‹ βˆ’(βˆ’cos⁑0)γ€—] I = πœ‹[βˆ’cosβ‘πœ‹+cos⁑0] I = πœ‹[βˆ’(βˆ’1)+1] I = πœ‹ [1+1] I = πŸπ… So, the correct answer is (c) Question 5 ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–tan⁑π‘₯ sec^2⁑π‘₯ γ€— 𝑑π‘₯ = _________. (a) 1 (b) βˆ’1 (c) 0 (d) 2 This is of form ∫_(βˆ’π’‚)^𝒂▒𝒇(𝒙)𝒅𝒙 𝒇(𝒙)=tan⁑π‘₯ sec^2⁑π‘₯ 𝒇(βˆ’π’™)=tan⁑〖(βˆ’π‘₯)γ€— sec^2⁑〖(βˆ’π‘₯)γ€—=βˆ’tan⁑π‘₯ sec^2⁑〖π‘₯ γ€— Thus, 𝒇(βˆ’π’™) =βˆ’π’‡β‘(𝒙) ∫1_(βˆ’πœ‹)^πœ‹β–’γ€–tan⁑π‘₯ sec^2⁑π‘₯ γ€— " 𝑑π‘₯"= 0 So, the correct answer is (c)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo