





Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Deleted for CBSE Board 2022 Exams
Misc 41 (MCQ) Important
Misc 42 (MCQ)
Misc 43 (MCQ)
Misc 44 (MCQ) Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
Last updated at Dec. 11, 2021 by Teachoo
Misc 1 (Method 1) Integrate the function 1/(π₯ β π₯^3 ) Solving integrand 1/(π₯ β π₯^3 )=1/π₯(1 β π₯^2 ) =π/π(π β π)(π + π) We can write it as π/π(π β π)(π + π) = π¨/π + π©/((π β π) ) + π/((π + π) ) 1/π₯(1 β π₯)(1 + π₯) = (π΄(1 β π₯) (1 + π₯) + π΅π₯ (1 + π₯) + πΆπ₯ (1 β π₯))/( π₯ (1 β π₯) (1 + π₯) ) Cancelling denominator π = π¨(π β π) (π + π) + π©π (π + π) + πͺπ (π β π) Putting π=π in (1) 1=π΄(1 β 0) (1 + 0) + π΅(0) (1 + 0) + πΆ(0) (1 β 0) 1=π΄ Γ 1 Γ 1 + π΅ Γ 0 + πΆ Γ 0 1=π΄+0+0 π¨=π Putting π=π in (1) 1 = π΄(1 β1) (1 +1) + π΅(1) (1 +1) + πΆ(1) (1 β1) 1 = π΄ Γ 0 + π΅ Γ (1) Γ (2) + πΆ Γ 0 1 = 0 +2π΅ + 0 π© = π/π Putting π=βπ in (1) 1 = π΄(1 β(β1)) (1 +(β1)) + π΅(β1) (1 +(β1)) + πΆ(β1) (1 β(β1)) 1 = π΄(1 + 1) (1 β1) + π΅(β1)(1β1) + πΆ(β1)(1+1) 1 = π΄ Γ 0 + π΅ Γ 0 + πΆ Γ(β1)(2) 1 = 0 +0 β2πΆ 1 = β2πΆ πͺ = βπ/π Hence we can write it as 1/π₯(1 β π₯)(1 + π₯) = 1/π₯ + (π/π)/((1 β π₯) ) + (β1/2)/((1 + π₯) ) π/π(π β π)(π + π) = π/π + π/π(π β π) + (βπ)/π(π + π) Therefore β«1βπ/π(π β π)(π + π) π π = β«1β1/π₯ ππ₯ + β«1β1/2(1 β π₯) ππ₯ + β«1β(β1)/2(1 + π₯) ππ₯ = β«1β1/π₯ ππ₯ + 1/2 β«1β1/((1 β π₯) ) ππ₯ β 1/2 β«1β1/((1 + π₯) ) ππ₯ = γπ₯π¨π γβ‘|π|+π/π [γπ₯π¨π γβ‘|π β π|/(βπ)] β1/2 γπ₯π¨π γβ‘|π + π|+πͺ = γlog γβ‘|π₯|β γ 1/2 log γβ‘|1 β π₯|β1/2 γlog γβ‘|1 + π₯|+πΆ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|1 β π₯|+γlog γβ‘|1 + π₯| ]+πΆ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|1 β π₯| |1 + π₯|]+πΆ As πππ π¨+πππ π©=logβ‘π΄π΅ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|(1 β π₯^2 )| ]+πΆ = 1/2 [2 γlog γβ‘|π₯|βγlog γβ‘|(1 β π₯^2 )|+2πΆ] = 1/2 [γlog γβ‘γ|π₯|^2 γβγlog γβ‘|(1 β π₯^2 )|+πΎ] = π/π log |π^π/((π β π^π ) )|+π² As πππ π¨βπππ π©=πππ π΄/π΅ Misc 1 (Method 2) Integrate the function 1/(π₯ β π₯^3 ) Now, β«1βγ1/(π₯ β π₯^3 ) ππ₯γ Taking x3 common from the denominator =β«1β1/(π₯^3 (π₯/π₯^3 β 1) ) ππ₯ =β«1βπ/(π^π (π/π^π β π) ) π π Let t = π/π^π βπ Differentiating with respect to π₯ π/ππ₯ (1/π₯^2 β1)=ππ‘/ππ₯ (β2)/π₯^3 =ππ‘/ππ₯ π π=(π^π π π)/(βπ) Putting the value t and dt in the equation β«1βγπ/(π^π (π/π^π βπ) ) π πγ=β«1βγ1/(π₯^3 (π‘) ) Γ (π₯^3 ππ‘)/(β2)γ =β«1βγπ/(βπ) π π/πγ =(β1)/( 2) β«1βππ‘/π‘ =(β1)/( 2) πππ|π‘|+πΆ Putting back π=π/π^π βπ =(β1)/( 2) πππ|1/π₯^2 β1|+πΆ =(β1)/( 2) πππ|(π β π^π)/π^π |+πΆ = 1/2 log |(1 β π₯^2)/π₯^2 |^(βπ)+πΆ = π/π log |π^π/(π β π^π )|+πͺ (As a log b = log π^π)