Misc 35 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35 You are here
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet - Chapter 41 Class 41 Formulas Important
Question 1 Important Deleted for CBSE Board 2025 Exams
Question 2 Important Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 (MCQ) Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Misc 35 Prove that β«_0^(π/2)βsin^3β‘π₯ ππ₯=2/3 Solving L.H.S β«_0^(π/2)βsin^3β‘π₯ ππ₯ = β«_0^(π/2)βγ γsin π₯ (sinγ^2β‘γπ₯)γ γ ππ₯ = β«_0^(π/2)βπ ππβ‘γπ₯ (1βγπππ γ^2 π₯)γ ππ₯ = β«_0^(π/2)βπ ππβ‘γπ₯ ππ₯β β«1_0^(π/2)βγsinβ‘γπ₯ γπππ γ^2 π₯γ ππ₯γγ π°_π β«1_0^(π/2)βsinβ‘γπ₯ ππ₯γ = β [cosβ‘π₯ ]_0^(π/2) = β[0β1] = 1 π°_π β«1_0^(π/2)βsinβ‘γπ₯ γπππ γ^2 π₯ ππ₯γ Let t = cos x ππ‘/ππ₯ = - sin x dt = β sin x dx Substituting, β«1_0^1βsinβ‘γπ₯Γπ‘^2Γγ ππ‘/(βsinβ‘γπ₯ γ ) = ββ«1_1^0βγπ‘^2 ππ‘γ = γβ[π‘^3/3]γ_1^0 = β("0 β " 1/3)=β((β1)/3) = 1/3 L.H.S = πΌ_1β πΌ_2 = 1 β 1/3 = π/π = R.H.S Hence, proved.