Check sibling questions

Definite integral |x - 1| + |x - 2| + |x - 3| dx from 1 to 4 - Teachoo

Misc 33 - Chapter 7 Class 12 Integrals - Part 2
Misc 33 - Chapter 7 Class 12 Integrals - Part 3 Misc 33 - Chapter 7 Class 12 Integrals - Part 4 Misc 33 - Chapter 7 Class 12 Integrals - Part 5 Misc 33 - Chapter 7 Class 12 Integrals - Part 6 Misc 33 - Chapter 7 Class 12 Integrals - Part 7

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Misc 33 Evaluate the definite integral ∫_1^4β–’[|π‘₯βˆ’1|+|π‘₯βˆ’2|+|π‘₯βˆ’3|] 𝑑π‘₯ I=∫_1^4β–’[|π‘₯βˆ’1|+|π‘₯βˆ’2|+|π‘₯βˆ’3|] 𝑑π‘₯ I=∫_1^4β–’|π‘₯βˆ’1| 𝑑π‘₯+∫_1^4β–’|π‘₯βˆ’2| 𝑑π‘₯+∫_1^4β–’|π‘₯βˆ’3| 𝑑π‘₯ Solving 𝐈𝟏 I1=∫_1^4β–’|π‘₯βˆ’1| 𝑑π‘₯ We kow that |π‘₯βˆ’1|= {β–ˆ( (π‘₯βˆ’1) π‘“π‘œπ‘Ÿ π‘₯β‰₯[email protected]βˆ’(π‘₯βˆ’1) π‘“π‘œπ‘Ÿ π‘₯<1)─ Therefore, I1=∫_1^4β–’|π‘₯βˆ’1| 𝑑π‘₯ I1=∫_1^4β–’(π‘₯βˆ’1) 𝑑π‘₯ I1=∫_1^4β–’π‘₯ 𝑑π‘₯βˆ’βˆ«_1^4β–’1 𝑑π‘₯ I1=[π‘₯^2/2]_1^4βˆ’[π‘₯]_1^4 I1=((4)^2 βˆ’ (1)^2)/2 βˆ’ [4βˆ’1] I1=(16 βˆ’ 1)/2 βˆ’ [3] I1=15/2 βˆ’3 I1=(15 βˆ’ 6)/2 I1=9/2 Solving 𝐈𝟐 I2=∫_1^4β–’|π‘₯βˆ’2| 𝑑π‘₯ We know that |π‘₯βˆ’2|= {β–ˆ( (π‘₯βˆ’2) π‘“π‘œπ‘Ÿ π‘₯β‰₯[email protected]βˆ’(π‘₯βˆ’2) π‘“π‘œπ‘Ÿ π‘₯<2)─ Therefore I2=∫_1^4β–’|π‘₯βˆ’2| 𝑑π‘₯ I2=∫_1^2β–’γ€–βˆ’(π‘₯βˆ’2) γ€— 𝑑π‘₯+∫_2^4β–’(π‘₯βˆ’2) 𝑑π‘₯ I2=∫_1^2β–’(βˆ’π‘₯+2) 𝑑π‘₯+∫_2^4β–’(π‘₯βˆ’2) 𝑑π‘₯ I2=∫_1^2β–’γ€–βˆ’π‘₯γ€— 𝑑π‘₯+∫_1^2β–’2 𝑑π‘₯+∫_2^4β–’π‘₯ 𝑑π‘₯βˆ’βˆ«_2^4β–’2 𝑑π‘₯ I2=βˆ’[π‘₯^2/2]_1^2+2[π‘₯]_1^2+[π‘₯^2/2]_2^4βˆ’2[π‘₯]_2^4 I2=βˆ’[(4 βˆ’ 1)/2]+2[2βˆ’1]+[(16 βˆ’ 4)/2]βˆ’2[4βˆ’2] I2=βˆ’[3/2]+2[1]+12/2βˆ’2[2] I2= (βˆ’ 3)/2 + 2+6βˆ’4 I2= (βˆ’3)/2 +8βˆ’4 I2= (βˆ’3)/2 +4 I2= (βˆ’ 3 + 8)/2 I2= 5/2 Solving πˆπŸ‘ I3=∫_1^4β–’|π‘₯βˆ’3| 𝑑π‘₯ We know |π‘₯βˆ’3|= {β–ˆ( (π‘₯βˆ’3) π‘“π‘œπ‘Ÿ π‘₯β‰₯[email protected]βˆ’(π‘₯βˆ’3) π‘“π‘œπ‘Ÿ π‘₯<3)─ Therefore, I3=∫_1^4β–’|π‘₯βˆ’3| 𝑑π‘₯ I3=∫_1^3β–’γ€–βˆ’(π‘₯βˆ’3) γ€— 𝑑π‘₯+∫_3^4β–’(π‘₯βˆ’3) 𝑑π‘₯ I3=∫_1^3β–’(βˆ’π‘₯+3) 𝑑π‘₯+∫_3^4β–’(π‘₯βˆ’3) 𝑑π‘₯ I3=∫_1^3β–’γ€–βˆ’π‘₯γ€— 𝑑π‘₯+∫_1^3β–’3 𝑑π‘₯+∫_3^4β–’π‘₯ 𝑑π‘₯βˆ’βˆ«_3^4β–’3 𝑑π‘₯ I3=βˆ’[π‘₯^2/2]_1^3+3[π‘₯]_1^3+[π‘₯^2/2]_3^4βˆ’3[π‘₯]_3^4 I3=βˆ’[(9 βˆ’ 1)/2]+3[3 βˆ’1]+[(16 βˆ’ 9)/2]βˆ’3[4βˆ’3] I3=(βˆ’ 8)/2 +3[2]+ 7/2 βˆ’ 3[1] I3=βˆ’4 +6+ 7/2 βˆ’ 3 I3=βˆ’7 +6+ 7/2 I3=βˆ’1+ 7/2 I3= (βˆ’2 + 7)/2 I3= 5/2 Putting the values of I1 , I2 , I3 in (1) I=9/2 + 5/2 + 5/2 I = πŸπŸ—/𝟐

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.