





Get live Maths 1-on-1 Classs - Class 6 to 12
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important You are here
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Deleted for CBSE Board 2023 Exams
Misc 41 (MCQ) Important
Misc 42 (MCQ)
Misc 43 (MCQ)
Misc 44 (MCQ) Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
Last updated at March 16, 2023 by Teachoo
Misc 33 Evaluate the definite integral β«_1^4β[|π₯β1|+|π₯β2|+|π₯β3|] ππ₯ I=β«_1^4β[|π₯β1|+|π₯β2|+|π₯β3|] ππ₯ I=β«_1^4β|π₯β1| ππ₯+β«_1^4β|π₯β2| ππ₯+β«_1^4β|π₯β3| ππ₯ Solving ππ I1=β«_1^4β|π₯β1| ππ₯ We kow that |π₯β1|= {β( (π₯β1) πππ π₯β₯[email protected]β(π₯β1) πππ π₯<1)β€ Therefore, I1=β«_1^4β|π₯β1| ππ₯ I1=β«_1^4β(π₯β1) ππ₯ I1=β«_1^4βπ₯ ππ₯ββ«_1^4β1 ππ₯ I1=[π₯^2/2]_1^4β[π₯]_1^4 I1=((4)^2 β (1)^2)/2 β [4β1] I1=(16 β 1)/2 β [3] I1=15/2 β3 I1=(15 β 6)/2 I1=9/2 Solving ππ I2=β«_1^4β|π₯β2| ππ₯ We know that |π₯β2|= {β( (π₯β2) πππ π₯β₯[email protected]β(π₯β2) πππ π₯<2)β€ Therefore I2=β«_1^4β|π₯β2| ππ₯ I2=β«_1^2βγβ(π₯β2) γ ππ₯+β«_2^4β(π₯β2) ππ₯ I2=β«_1^2β(βπ₯+2) ππ₯+β«_2^4β(π₯β2) ππ₯ I2=β«_1^2βγβπ₯γ ππ₯+β«_1^2β2 ππ₯+β«_2^4βπ₯ ππ₯ββ«_2^4β2 ππ₯ I2=β[π₯^2/2]_1^2+2[π₯]_1^2+[π₯^2/2]_2^4β2[π₯]_2^4 I2=β[(4 β 1)/2]+2[2β1]+[(16 β 4)/2]β2[4β2] I2=β[3/2]+2[1]+12/2β2[2] I2= (β 3)/2 + 2+6β4 I2= (β3)/2 +8β4 I2= (β3)/2 +4 I2= (β 3 + 8)/2 I2= 5/2 Solving ππ I3=β«_1^4β|π₯β3| ππ₯ We know |π₯β3|= {β( (π₯β3) πππ π₯β₯[email protected]β(π₯β3) πππ π₯<3)β€ Therefore, I3=β«_1^4β|π₯β3| ππ₯ I3=β«_1^3βγβ(π₯β3) γ ππ₯+β«_3^4β(π₯β3) ππ₯ I3=β«_1^3β(βπ₯+3) ππ₯+β«_3^4β(π₯β3) ππ₯ I3=β«_1^3βγβπ₯γ ππ₯+β«_1^3β3 ππ₯+β«_3^4βπ₯ ππ₯ββ«_3^4β3 ππ₯ I3=β[π₯^2/2]_1^3+3[π₯]_1^3+[π₯^2/2]_3^4β3[π₯]_3^4 I3=β[(9 β 1)/2]+3[3 β1]+[(16 β 9)/2]β3[4β3] I3=(β 8)/2 +3[2]+ 7/2 β 3[1] I3=β4 +6+ 7/2 β 3 I3=β7 +6+ 7/2 I3=β1+ 7/2 I3= (β2 + 7)/2 I3= 5/2 Putting the values of I1 , I2 , I3 in (1) I=9/2 + 5/2 + 5/2 I = ππ/π