Integration Full Chapter Explained - Integration Class 12 - Everything you need


Last updated at May 29, 2018 by Teachoo
Transcript
Misc 23 Integrate the function tan−1 1 − 𝑥1 + 𝑥 Let x = cos 2𝜃 𝑑𝑥𝑑𝜃=−2 sin2𝜃 dx = −2 sin 2𝜃 d𝜃 Substituting, tan−1 1 − 𝑥1 + 𝑥 𝑑𝑥 = 𝑡𝑎𝑛−1 1 − cos2𝜃1 + cos2𝜃×(−2 sin2 𝜃) 𝑑 𝜃 = −2 𝑡𝑎𝑛−1 1 − 1 − 2 𝑠𝑖𝑛2 𝜃1 + 2 𝑐𝑜𝑠2 𝜃 − 1× sin 2𝜃 d𝜃 = −2 𝑡𝑎𝑛−1 sin2𝜃 cos2𝜃× sin2𝜃 𝑑𝜃 = −2 𝑡𝑎𝑛−1 sin𝜃 cos𝜃× sin2𝜃 𝑑𝜃 = −2 𝑡𝑎𝑛−1 𝑡𝑎𝑛𝜃× sin2𝜃 𝑑𝜃 = − 2 𝜃 sin2𝜃 𝑑𝜃 =−2 𝜃 sin2𝜃 𝑑𝜃− 𝑑 𝜃𝑑𝜃 sin2𝜃 𝑑𝜃 𝑑𝜃 =−2 𝜃 − cos2𝜃2− 1 − cos2𝜃2𝑑𝜃 =−2 −𝜃 cos2𝜃2+ cos2𝜃2𝑑𝜃 =−2 − 𝜃 cos2𝜃2+ sin2𝜃4 Now, x = cos 2𝜃 Putting the values = −2 − 12 12 𝑐𝑜𝑠−1𝑥𝑥+ 1 − 𝑥24 = −2 1 − 𝑥24− 𝑥 𝑐𝑜𝑠−1𝑥4+ C = 𝟏𝟐 𝒙 𝒄𝒐𝒔−𝟏𝒙− 𝟏− 𝒙𝟐 + C
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20 Important
Misc 21
Misc 22
Misc 23 You are here
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28 Important
Misc 29
Misc 30 Important
Misc 31 Important
Misc 32 Important
Misc 33 Important
Misc 34
Misc 35
Misc 36
Misc 37
Misc 38 Important
Misc 39
Misc 40 Important Not in Syllabus - CBSE Exams 2021
Misc 41 Important
Misc 42
Misc 43
Misc 44 Important
Integration Formula Sheet - Chapter 7 Class 12 Formulas Important
About the Author