

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.2, 1 Integrate the function: 2𝑥/(1 + 𝑥2) We need to find ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 Let 𝟏 + 𝒙𝟐 = 𝒕 Differentiating 𝑤.𝑟.𝑡.𝑥 2𝑥=𝑑𝑡/𝑑𝑥 𝒅𝒙=𝒅𝒕/𝟐𝒙 Thus, our equation becomes ∫1▒𝟐𝒙/(𝟏 + 𝒙𝟐) 𝒅𝒙 =∫1▒2𝑥/𝑡 . 𝑑𝑡/2𝑥 =∫1▒𝑑𝑡/𝑡 = log |𝒕|+𝑪 Putting t = 1 + x2 = log |1+𝑥^2 |+𝐶 = log (𝟏+𝒙^𝟐 )+𝑪 (∫1▒〖1/𝑥 𝑑𝑥〗=log|𝑥|+𝐶) (Since 1+𝑥^2 is always positive)