Ex 7.2, 32 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important You are here
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 32 Integrate 1/(1 + cotβ‘π₯ ) Simplify the given function β«1β1/(1 + cotβ‘π₯ ) ππ₯ = β«1β1/(1 + cosβ‘π₯/sinβ‘π₯ ) ππ₯ = β«1β1/(γsinβ‘π₯ + cosγβ‘π₯/sinβ‘π₯ ) ππ₯ = β«1βsinβ‘π₯/γsinβ‘π₯ + cosγβ‘π₯ ππ₯ Multiplying & dividing by 2 = β«1β(2 sinβ‘π₯)/2(γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯ Adding & subtracting πππ β‘π₯ in numerator = β«1β(sinβ‘π₯ + sinβ‘π₯ + cosβ‘π₯ β cosβ‘π₯)/2(γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯ = 1/2 β«1β((sinβ‘π₯ + cosβ‘π₯ + sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯ = 1/2 β«1β((sinβ‘π₯ + cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ +(sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯ = 1/2 β«1β(1+(sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯ = 1/2 [π₯+β«1β((sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯] + πΆ1 β¦(1) Solving π1 I1 = β«1β(sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ππ₯ Let γsinβ‘π₯ + cosγβ‘π₯=π‘ Differentiating both sides π€.π.π‘.π₯ γcosβ‘π₯βsinγβ‘π₯=ππ‘/ππ₯ ππ₯=ππ‘/γcosβ‘π₯ β sinγβ‘π₯ ππ₯=ππ‘/(β(γsinβ‘π₯ β cosγβ‘π₯ ) ) Thus, our equation becomes β¦(2) I1 = β«1β(sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ππ₯ = β«1β(sinβ‘π₯ β cosβ‘π₯)/π‘ . ππ‘/(β(γsinβ‘π₯ β cosγβ‘π₯ ) ) = β1β«1βππ‘/π‘ = βγlog γβ‘|π‘|+πΆ Putting back π‘=π ππβ‘π₯+πππ β‘π₯ = βlogβ‘γ |sinβ‘π₯+cosβ‘π₯ |γ+πΆ2 Putting the value of I1 in (1) β΄ β«1βγ1/(1 + cotβ‘π₯ ) " " γ = 1/2 [π₯+β«1β((sinβ‘π₯ β cosβ‘π₯)/γsinβ‘π₯ + cosγβ‘π₯ ) ππ₯] + πΆ1 = 1/2 [π₯βlogβ‘|sinβ‘π₯+cosβ‘π₯ |+πΆ2" " ] +πΆ1 = π₯/2β1/2 logβ‘γ |sinβ‘π₯+cosβ‘π₯ |γ+πΆ1+πΆ2/2 = π/π βπ/π πππβ‘γ |πππβ‘π+πππβ‘π |γ+πͺ