Slide1.JPG

Slide2.JPG


Transcript

Ex 7.9, 1 Evaluate the integrals using substitution ∫_0^1▒〖𝑥/(𝑥^2 + 1) 𝑑𝑥〗 We need to find ∫_𝟎^𝟏▒〖𝒙/(𝒙^𝟐 + 𝟏) 𝒅𝒙〗 Let 𝒕=𝒙^𝟐+𝟏 Differentiating w.r.t. 𝑥 𝑑𝑡/𝑑𝑥=𝑑/𝑑𝑥 (𝑥^2+1) 𝑑𝑡/𝑑𝑥=2𝑥 𝒅𝒕/𝟐𝒙=𝒅𝒙 Now, when 𝒙 varies from 0 to 1 then 𝒕 varies from 1 to 2 Therefore ∫_𝟎^𝟏▒〖𝒙/(𝒙^𝟐+𝟏) 𝒅𝒙=∫_𝟏^𝟐▒〖𝒙/𝒕 𝒅𝒕/𝟐𝒙〗〗 =1/2 ∫_1^2▒𝑑𝑡/𝑡 =𝟏/𝟐 [𝒍𝒐𝒈|𝒕|]_𝟏^𝟐 =1/2 [𝑙𝑜𝑔|2|−𝑙𝑜𝑔|1|] =1/2 [𝑙𝑜𝑔|2|−0] =1/2 𝑙𝑜𝑔|2| =𝟏/𝟐 𝒍𝒐𝒈 𝟐

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.