Check sibling questions

Ex 7.10, 5 - Evaluate 0 -> pi/2 integral sin x / 1 + cos2 x dx

Ex 7.10, 5 - Chapter 7 Class 12 Integrals - Part 2

Learn Intergation from Davneet Sir - Live lectures starting soon!


Transcript

Ex 7.10, 5 Evaluate the integrals using substitution ∫_0^(πœ‹/2 )β–’sin⁑π‘₯/(1 + cos^2⁑π‘₯ )⁑〖 𝑑π‘₯γ€— ∫_0^(πœ‹/2 )β–’sin⁑π‘₯/(1 + cos^2⁑π‘₯ )⁑〖 𝑑π‘₯γ€— Put cos π‘₯=𝑑 Differentiating w.r.t.π‘₯ βˆ’sin⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=(βˆ’π‘‘π‘‘)/sin⁑π‘₯ Hence when π‘₯ varies from 0 to πœ‹/2, 𝑑 varies from 1 to 0 Therefore, we can write ∫_0^(πœ‹/2)β–’sin⁑π‘₯/(1+γ€– cos^2〗⁑π‘₯ ) 𝑑π‘₯=∫_1^0β–’γ€–sin⁑π‘₯/(1 + 𝑑^2 ) ((βˆ’π‘‘π‘‘)/sin⁑π‘₯ ) γ€— =βˆ’βˆ«_1^0▒𝑑𝑑/(1 + 𝑑^2 ) =βˆ’[tan^(βˆ’1)⁑𝑑 ]_1^0 =βˆ’[tan^(βˆ’1)⁑〖(0)βˆ’tan^(βˆ’1)⁑(1) γ€— ] =βˆ’[0βˆ’πœ‹/4] =βˆ’[βˆ’πœ‹/4] =𝝅/πŸ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.