Slide3.JPG

Slide4.JPG
Slide5.JPG

Go Ad-free

Transcript

Ex 7.9, 2 Evaluate the integrals using substitution ∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑〖" " Ο•" " γ€— ) cos^5⁑ϕ 𝑑ϕ〗 Let 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• cos^5⁑〖ϕ 𝑑ϕ〗 γ€— 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• cos^4⁑〖ϕ π‘π‘œπ‘ Ο• 𝑑ϕ〗 γ€— 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑ϕ ) (1βˆ’sin^2⁑ϕ )^2 π‘π‘œπ‘ Ο• 𝑑ϕ〗 Put 𝑑=sin⁑ϕ Differentiating w.r.t. Ο• 𝑑𝑑/𝑑ϕ=𝑑(sin⁑ϕ )/𝑑ϕ 𝑑𝑑/𝑑ϕ=cos⁑ϕ 𝑑𝑑/cos⁑ϕ =𝑑ϕ Hence, when Ο• varies form 0 to πœ‹/2 , 𝑑 varies form 0 to 1 Hence we can write the integral as 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• (1βˆ’sin^2⁑ϕ )^2 π‘π‘œπ‘ Ο• 𝑑ϕ〗 =∫_0^1β–’γ€–βˆšπ‘‘ (1βˆ’π‘‘^2 )^2 π‘π‘œπ‘ Ο• 𝑑𝑑/π‘π‘œπ‘ Ο•γ€— =∫_0^1β–’γ€–βˆšπ‘‘ (1βˆ’π‘‘^2 )^2 𝑑𝑑〗 =∫_0^1▒〖𝑑^(1/2) (1βˆ’γ€–2𝑑〗^2+𝑑^4 )𝑑𝑑〗 =∫_0^1β–’γ€– (𝑑^(1/2)βˆ’γ€–2𝑑〗^(2 + 1/2)+𝑑^(4 + 1/2) ) 𝑑𝑑〗 =∫_0^1▒〖𝑑^(1/2) π‘‘π‘‘γ€—βˆ’2∫1▒𝑑^(3/2) 𝑑𝑑+∫1▒𝑑^(9/2) 𝑑𝑑 =[𝑑^(1/2 +1)/(1/2 +1)]_0^1βˆ’2[𝑑^(3/2 +1)/(3/2 +1)]_0^1+[𝑑^(9/2 +1)/(9/2 +1)]_0^1 =[𝑑^(3/2 )/(3/2)]_0^1βˆ’2[𝑑^(7/2 )/(7/2)]_0^1+[𝑑^(11/2 )/(11/2)]_0^1 =2/3 (1^(3/2)βˆ’0^(3/2) )βˆ’2 Γ— 2/7 (1^(7/2)βˆ’0^(7/2) )+2/11 [1^(11/2)βˆ’0^(11/2) ] =2/3βˆ’4/7+2/11 =(2 Γ— 7 Γ— 11 βˆ’ 4 Γ— 3 Γ— 11 + 2 Γ— 3 Γ—7)/(2 Γ— 7 Γ— 11) =(154 βˆ’ 132 + 42)/231 =πŸ”πŸ’/πŸπŸ‘πŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo