Ex 7.10

Chapter 7 Class 12 Integrals
Serial order wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Transcript

Ex 7.10, 1 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ Let π=β«_π^(π/π)βγγπππγ^πβ‘π ππγ I=β«_π^(π/π)βγγππ¨π¬γ^πβ‘ (π/πβπ)ππγ I= β«_π^((π )/π)βγγπ¬π’π§γ^π πγβ‘ππ Using P4 : β«_0^πβγπ(π₯)ππ₯=γ β«_0^πβπ(πβπ₯)ππ₯ (As cos (π/2βπ)=sinβ‘π) β¦(2) Adding (1) and (2) I+I= β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ + β«_0^((π )/2)βγsin^2 π₯γβ‘ππ₯ 2I= β«_0^((π )/2)β(cos^2β‘γπ₯+sin^2β‘π₯ γ )β‘ππ₯ ππ =β«_π^((π )/π)βγπ .γβ‘ππ 2I=[π₯]_0^(π/2) 2I =π/2β0 2I =π/2 π=π/π

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.