Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 1 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ Let π=β«_π^(π /π)βγγπππγ^πβ‘π π πγ I=β«_π^(π /π)βγγππ¨π¬γ^πβ‘ (π /πβπ)π πγ I= β«_π^((π )/π)βγγπ¬π’π§γ^π πγβ‘π π Adding (1) and (2) I+I= β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ + β«_0^((π )/2)βγsin^2 π₯γβ‘ππ₯ 2I= β«_0^((π )/2)β(cos^2β‘γπ₯+sin^2β‘π₯ γ )β‘ππ₯ ππ =β«_π^((π )/π)βγπ .γβ‘π π 2I=[π₯]_0^(π/2) 2I =π/2β0 2I =π/2 π=π /π Evaluate: β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ Let I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ " " I= β«_0^πβγπ^cosβ‘γ(π β π₯)γ /(π^cosβ‘γ(π β π₯)γ + π^γβcosγβ‘γ(π β π₯)γ ) ππ₯γ " " I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^(γβ(βcosγβ‘π₯)) ) ππ₯γ I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ Evaluate: β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ Let I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ " " I= β«_0^πβγπ^cosβ‘γ(π β π₯)γ /(π^cosβ‘γ(π β π₯)γ + π^γβcosγβ‘γ(π β π₯)γ ) ππ₯γ " " I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^(γβ(βcosγβ‘π₯)) ) ππ₯γ I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ Adding (1) and (2) i.e. (1) + (2) I+I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ + β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ 2I=β«_0^πβγ(π^cosβ‘π₯ + π^γβcosγβ‘π₯ )/(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ 2I =β«_0^πβγ1 .γβ‘ππ₯ 2I=[π₯]_0^π 2I =πβ0 2I =π π=π /π