Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 7.10, 1 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ Let π=β«_π^(π /π)βγγπππγ^πβ‘π π πγ I=β«_π^(π /π)βγγππ¨π¬γ^πβ‘ (π /πβπ)π πγ I= β«_π^((π )/π)βγγπ¬π’π§γ^π πγβ‘π π Adding (1) and (2) I+I= β«_0^(π/2)βγcos^2β‘π₯ ππ₯γ + β«_0^((π )/2)βγsin^2 π₯γβ‘ππ₯ 2I= β«_0^((π )/2)β(cos^2β‘γπ₯+sin^2β‘π₯ γ )β‘ππ₯ ππ =β«_π^((π )/π)βγπ .γβ‘π π 2I=[π₯]_0^(π/2) 2I =π/2β0 2I =π/2 π=π /π Evaluate: β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ Let I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ " " I= β«_0^πβγπ^cosβ‘γ(π β π₯)γ /(π^cosβ‘γ(π β π₯)γ + π^γβcosγβ‘γ(π β π₯)γ ) ππ₯γ " " I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^(γβ(βcosγβ‘π₯)) ) ππ₯γ I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ Evaluate: β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ Let I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ " " I= β«_0^πβγπ^cosβ‘γ(π β π₯)γ /(π^cosβ‘γ(π β π₯)γ + π^γβcosγβ‘γ(π β π₯)γ ) ππ₯γ " " I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^(γβ(βcosγβ‘π₯)) ) ππ₯γ I=β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ Adding (1) and (2) i.e. (1) + (2) I+I=β«_0^πβγπ^cosβ‘π₯ /(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ + β«_0^πβγπ^γβcosγβ‘π₯ /(π^γβcosγβ‘π₯ + π^cosβ‘π₯ ) ππ₯γ 2I=β«_0^πβγ(π^cosβ‘π₯ + π^γβcosγβ‘π₯ )/(π^cosβ‘π₯ + π^γβcosγβ‘π₯ ) ππ₯γ 2I =β«_0^πβγ1 .γβ‘ππ₯ 2I=[π₯]_0^π 2I =πβ0 2I =π π=π /π