Ex 7.10, 21 (MCQ) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important You are here
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 21 The value of β«_0^(π/2)βπππ((4 + 3 sinβ‘π₯)/(4 + 3 cosβ‘π₯ ))ππ₯ is 2 (B) 3/4 (C) 0 (D) β2 Let I=β«_0^(π/2)βπππ[(4 + 3 sinβ‘π₯)/(4 + 3 πππ π₯)] ππ₯ β΄ I =β«_0^(π/2)βπππ[(4 + 3π ππ(π/2 β π₯))/(4 + 3πππ (π/2 β π₯) )] ππ₯ I =β«_0^(π/2)βπππ[(4 + 3πππ π₯)/(4 + 3 sinβ‘π₯ )] ππ₯ Adding (1) and (2) i.e. (1) + (2) I +I=β«_0^(π/2)βπππ[(4 + 3 sinβ‘π₯)/(4 + 3 cosβ‘π₯ )] ππ₯+β«_0^(π/2)βπππ[(4 + 3 cosβ‘π₯)/(4 + 3 sinβ‘π₯ )] ππ₯ 2I = β«_0^(π/2)β{πππ[(4 + 3 sinβ‘π₯)/(4 + 3 cosβ‘π₯ )]+πππ[(4 + 3 cosβ‘π₯)/(4 + 3 sinβ‘π₯ )]}ππ₯" " 2I = β«_0^(π/2)βπππ[(4 + 3 sinβ‘π₯)/(4 + 3 cosβ‘π₯ )Γ(4 + 3 cosβ‘π₯)/(4 + 3 sinβ‘π₯ )]ππ₯" " 2I=β«_0^(π/2)βγlogβ‘1 ππ₯γ 2I = 0 β΄ I = 0 β΄ Option C is correct.