Slide11.JPG

Slide12.JPG
Slide13.JPG


Transcript

Ex 7.10, 5 By using the properties of definite integrals, evaluate the integrals : ∫_(−5)^5▒〖 |𝑥+2| 〗 𝑑𝑥 |𝑥+2|={█((𝑥+2) 𝑖𝑓 𝑥+2≥0@−(𝑥+2) 𝑖𝑓 𝑥+2<0)┤ ={█((𝑥+2) 𝑖𝑓 𝑥≥−,2@−(𝑥+2) 𝑖𝑓 𝑥<−2)┤ ∴ ∫_(−5)^5▒〖|𝑥+2|𝑑𝑥=∫_(−5)^(−2)▒〖|𝑥+2|𝑑𝑥+〗〗 ∫_(−2)^5▒|𝑥+2|𝑑𝑥 =∫_(−5)^(−2)▒〖−(𝑥+2)𝑑𝑥+〗 ∫_(−2)^5▒(𝑥+2)𝑑𝑥 =−∫_(−5)^(−2)▒〖𝑥𝑑𝑥−〗 ∫_(−5)^(−2)▒2𝑑𝑥+∫_(−2)^5▒𝑥𝑑𝑥+∫_(−2)^5▒2𝑑𝑥 =−[𝑥^2/2]_(−5)^(−2)−2[𝑥]_(−5)^(−2)+[𝑥^2/2]_(−2)^5+2[𝑥]_(−2)^5 =−(((−2)^2 − (−5)^2)/2)−2[−2−(−5)]+[((5)^2 − (−2)^2)/2] +2 [5−(−2)] =−((4 − 25)/2)−2[−2+5]+[(25 − 4)/2]+2[5+2] =−((−21)/2)−2[3]+21/2+2[7] =21/2+21/2−6+14 =42/2+8 = 21+8 = 𝟐𝟗

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.