
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.10
Ex 7.10, 2 You are here
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.10, 2 By using the properties of definite integrals, evaluate the integrals : 0 𝜋2 sin𝑥 sin𝑥 + cos𝑥 𝑑𝑥 Let I= 0 𝜋2 sin𝑥 sin𝑥 + cos𝑥 𝑑𝑥 I= 0 𝜋2 sin 𝜋2 − 𝑥 sin 𝜋2 − 𝑥 + cos 𝜋2 − 𝑥 𝑑𝑥 ∴ I= 0 𝜋2 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛𝑥 𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I= 0 𝜋2 sin 𝑥 sin 𝑥 + cos 𝑥 𝑑𝑥+ 0 𝜋2 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥 𝑑𝑥 2I= 0 𝜋2 sin 𝑥 + 𝑐𝑜𝑠𝑥 sin 𝑥 + 𝑐𝑜𝑠𝑥 𝑑𝑥 2I= 0 𝜋2 𝑑𝑥 I= 12 0 𝜋2 𝑑𝑥 I= 12 𝑥0 𝜋2 I= 12 𝜋2−0 ∴ I= 𝜋4