Ex 7.10, 9 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9 You are here
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 9 By using the properties of definite integrals, evaluate the integrals : โซ_0^2โ๐ฅโกโ(2โ๐ฅ) ๐๐ฅ Let I=โซ_0^2โใ๐ฅโ(2โ๐ฅ) ๐๐ฅใ โด I=โซ_0^2โใ(2โ๐ฅ) โ(2โ(2โ๐ฅ) ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) โ(2โ2+๐ฅ ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) โ(๐ฅ ) ๐๐ฅใ I=โซ_0^2โใ(2โ๐ฅ) (๐ฅ)^(1/2) ๐๐ฅใ I=โซ_0^2โใ(2. ๐ฅ^(1/2)โ๐ฅ.ใ ๐ฅใ^(1/2) ) ๐๐ฅใ I=2โซ_0^2โใ๐ฅ^(1/2) ๐๐ฅใ โโซ_0^2โใ๐ฅ. ๐ฅ^(3/2) ๐๐ฅใ I=2[๐ฅ^(1/2 + 1)/(1/2 + 1)]_0^2โ [๐ฅ^(3/2 + 1)/(3/2 + 1)]_0^2 I=2[๐ฅ^(3/2 )/(3/2)]_0^2โ [๐ฅ^(5/2)/(5/2)]_0^2 I=(2. 2)/3 [๐ฅ^(3/2) ]_0^2โ ใ2/5 [๐ฅ^(5/2) ]ใ_0^2 I=4/3 [(2)^(3/2)โ(0)^(3/2) ] โ 2/5 [(2)^(5/2)โ(0)^(5/2) ] I=4/3 [(2)^(3/2) ] โ 2/5 [(2)^(5/2) ] I=4/3 [[(2)^(1/2) ]^3 ] โ 2/5 [[(2)^(1/2) ]^3 ] I=4/3 [(โ2)^3 ] โ 2/5 [(โ2)^5 ] I=4/3 [2โ2] โ 2/5 [4โ2] I=(8โ2)/3โ(8โ2)/5 I=8โ2 [1/3โ1/5] I=8โ2 [2/15] ๐=(๐๐โ๐)/๐๐