Slide21.JPG

Slide22.JPG
Slide23.JPG


Transcript

Ex 7.10, 9 By using the properties of definite integrals, evaluate the integrals : โˆซ_0^2โ–’๐‘ฅโกโˆš(2โˆ’๐‘ฅ) ๐‘‘๐‘ฅ Let I=โˆซ_0^2โ–’ใ€–๐‘ฅโˆš(2โˆ’๐‘ฅ) ๐‘‘๐‘ฅใ€— โˆด I=โˆซ_0^2โ–’ใ€–(2โˆ’๐‘ฅ) โˆš(2โˆ’(2โˆ’๐‘ฅ) ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^2โ–’ใ€–(2โˆ’๐‘ฅ) โˆš(2โˆ’2+๐‘ฅ ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^2โ–’ใ€–(2โˆ’๐‘ฅ) โˆš(๐‘ฅ ) ๐‘‘๐‘ฅใ€— I=โˆซ_0^2โ–’ใ€–(2โˆ’๐‘ฅ) (๐‘ฅ)^(1/2) ๐‘‘๐‘ฅใ€— I=โˆซ_0^2โ–’ใ€–(2. ๐‘ฅ^(1/2)โˆ’๐‘ฅ.ใ€– ๐‘ฅใ€—^(1/2) ) ๐‘‘๐‘ฅใ€— I=2โˆซ_0^2โ–’ใ€–๐‘ฅ^(1/2) ๐‘‘๐‘ฅใ€— โˆ’โˆซ_0^2โ–’ใ€–๐‘ฅ. ๐‘ฅ^(3/2) ๐‘‘๐‘ฅใ€— I=2[๐‘ฅ^(1/2 + 1)/(1/2 + 1)]_0^2โˆ’ [๐‘ฅ^(3/2 + 1)/(3/2 + 1)]_0^2 I=2[๐‘ฅ^(3/2 )/(3/2)]_0^2โˆ’ [๐‘ฅ^(5/2)/(5/2)]_0^2 I=(2. 2)/3 [๐‘ฅ^(3/2) ]_0^2โˆ’ ใ€–2/5 [๐‘ฅ^(5/2) ]ใ€—_0^2 I=4/3 [(2)^(3/2)โˆ’(0)^(3/2) ] โˆ’ 2/5 [(2)^(5/2)โˆ’(0)^(5/2) ] I=4/3 [(2)^(3/2) ] โˆ’ 2/5 [(2)^(5/2) ] I=4/3 [[(2)^(1/2) ]^3 ] โˆ’ 2/5 [[(2)^(1/2) ]^3 ] I=4/3 [(โˆš2)^3 ] โˆ’ 2/5 [(โˆš2)^5 ] I=4/3 [2โˆš2] โˆ’ 2/5 [4โˆš2] I=(8โˆš2)/3โˆ’(8โˆš2)/5 I=8โˆš2 [1/3โˆ’1/5] I=8โˆš2 [2/15] ๐ˆ=(๐Ÿ๐Ÿ”โˆš๐Ÿ)/๐Ÿ๐Ÿ“

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.