Integration Full Chapter Explained - Integration Class 12 - Everything you need

Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.11, 11 By using the properties of definite integrals, evaluate the integrals : β«_((β π)/2)^(π/2)βγ sin^2γβ‘π₯ ππ₯ This is of form β«_(βπ)^πβπ(π₯)ππ₯ where π(π₯)=sin^2β‘π₯ π(βπ₯)=sin^2β‘(βπ₯)=(βπ πππ₯)^2=sin^2β‘π₯ β΄ π(π₯)=π(βπ₯) Using the Property β«_(βπ)^πβγπ(π₯)ππ₯=2,γ β«_0^πβγπ(π₯)ππ₯ γ if f(βπ₯)=π(π₯) β΄ β«_((βπ)/2)^(π/2)βγsin^2β‘γπ₯ ππ₯γ=2β«_0^(π/2)βγγπππγ^π π ππ₯γγ =2β«_0^(π/2)β[(π β πππβ‘ππ)/π]ππ₯ =β«_0^(π/2)βγ(1βcosβ‘2π₯ ) ππ₯γ = [π₯ βsinβ‘2π₯/2]_0^(π/2) = [π/2βsinβ‘2(π/2)/2]β [0βsinβ‘γ2(0)γ/2] = π/2βsinβ‘π/2β0 = π/2β0+0 = π /π β΅ cos 2x = 1 β 2 γπ ππγ^2 π₯ β 2 γπ ππγ^2 π₯ = 1 β cos 2x β γπ ππγ^2 π₯ = "1 β cos 2x" /2
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important
Ex 7.11,8 Important
Ex 7.11, 9
Ex 7.11, 10 Important
Ex 7.11, 11 Important You are here
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15
Ex 7.11, 16
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 Important
Ex 7.11, 21 Important
About the Author