






Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important You are here
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.10, 16 By using the properties of definite integrals, evaluate the integrals : 0𝜋 log 1+ cos𝑥 𝑑𝑥 Let I= 0𝜋 log 1+ cos𝑥 𝑑𝑥 ∴ I= 0𝜋𝑙𝑜𝑔 1+𝑐𝑜𝑠 𝜋−𝑥 𝑑𝑥 I= 0𝜋𝑙𝑜𝑔 1− cos𝑥 𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I= 0𝜋𝑙𝑜𝑔 1+ cos𝑥𝑑𝑥+ 0𝜋𝑙𝑜𝑔 1− cos𝑥𝑑𝑥 2I= 0𝜋 𝑙𝑜𝑔 1+ cos𝑥+𝑙𝑜𝑔 1− cos𝑥𝑑𝑥 2I= 0𝜋𝑙𝑜𝑔 1+ cos𝑥 1− cos𝑥𝑑𝑥 2I= 0𝜋𝑙𝑜𝑔 1− cos2𝑥𝑑𝑥 2I= 0𝜋𝑙𝑜𝑔 𝑠𝑖𝑛2𝑥𝑑𝑥 2I= 0𝜋2 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 2I=2 0𝜋𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 I= 0𝜋𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 Here, 𝑓 𝑥= log sin𝑥 f 𝜋−𝑥=𝑙𝑜𝑔 𝑠𝑖𝑛 𝜋−𝑥𝑑𝑥 =𝑙𝑜𝑔 sin𝑥𝑑𝑥 =𝑓 𝑥 ∴ I= 0𝜋𝑙𝑜𝑔 sin𝑥𝑑𝑥=2 0 𝜋2𝑙𝑜𝑔 sin𝑥𝑑𝑥 Let I1= 0 𝜋2 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 Solving 𝐈𝟏 I1= 0 𝜋2 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 ∴ I1= 0 𝜋2𝑠𝑖𝑛 𝜋2−𝑥𝑑𝑥 I1= 0 𝜋2𝑙𝑜𝑔 cos𝑥𝑑𝑥 Adding (2) and (3) i.e. (2) + (3) I1 + I1 = 0 𝜋2𝑙𝑜𝑔 sin𝑥𝑑𝑥+ 0 𝜋2𝑙𝑜𝑔 cos𝑥𝑑𝑥 2I1 = 0 𝜋2 log sin𝑥 cos𝑥𝑑𝑥 2I1 = 0 𝜋2 log 2sin𝑥 cos𝑥2𝑑𝑥 2I1 = 0 𝜋2 log 2sin𝑥 cos𝑥−𝑙𝑜𝑔 2𝑑𝑥 2I1 = 0 𝜋2 log sin2𝑥−𝑙𝑜𝑔2𝑑𝑥 2I1 = 0 𝜋2log sin2𝑥𝑑𝑥− 0 𝜋2log 2𝑑𝑥 Solving 𝐈𝟐 I2= 0 𝜋2log sin2𝑥𝑑𝑥 Let 2𝑥=𝑡 Differentiating both sides w.r.t.𝑥 2= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡2 ∴ Putting the values of t and 𝑑𝑡 and changing the limits, I2 = 0 𝜋2log sin2𝑥𝑑𝑥 I2 = 0𝜋log sin𝑡 𝑑𝑡2 I2 = 12 0𝜋log sin𝑡𝑑𝑡 Here, 𝑓 𝑡= log𝑠𝑖𝑛𝑡 𝑓 2𝑎−𝑡=𝑓 2𝜋−𝑡= log𝑠𝑖𝑛 2𝜋−𝑡= log sin𝑡 As, 𝑓 𝑡=𝑓 2𝑎−𝑡 ∴ I2 = 12 0𝜋 log sin𝑡 𝑑𝑡= 12 ×2 0 𝜋2 log sin𝑡. 𝑑𝑡 = 0 𝜋2 log sin𝑡. 𝑑𝑡 I2= 0 𝜋2 log sin𝑥 𝑑𝑥 Putting the value of I2 in equation (3), we get 2I1 = 0 𝜋2 log sin2𝑥𝑑𝑥− 0 𝜋2 log 2𝑑𝑥 2I1 = 0 𝜋2 log sin𝑥𝑑𝑥−log 2 0 𝜋2 1.𝑑𝑥 2I1 = I1 − log 2 𝑥0 𝜋2 2I1−I1=−log2 𝜋2−0 I1=−log2 𝜋2 ∴ 𝐼1= − 𝜋2 log2 Hence, 𝐈=2 I1= 2 × −𝜋2 log2=−𝝅 𝒍𝒐𝒈𝟐