Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important You are here
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 16 By using the properties of definite integrals, evaluate the integrals : β«_0^πβlogβ‘(1+cosβ‘π₯ ) ππ₯ Let I=β«_π^π βπππβ‘(π+πππβ‘π ) π π β΄ I=β«_0^πβlogβ‘(1+πππ (πβπ₯)) ππ₯ π=β«_π^π βπ₯π¨π β‘(πβπππβ‘π ) ππ₯ Adding (1) and (2) i.e. (1) + (2) I+I=β«_0^πβπππ(1+cosβ‘π₯ )ππ₯+β«_0^πβπππ(1βcosβ‘π₯ )ππ₯ ππ=β«_π^π β[πππ(π+πππβ‘π )+πππ(πβπππβ‘π )]π π "Using log(a) + log(b)" = "log(a.b)") 2I=β«_0^πβπππ[(π+πππβ‘π )(πβπππβ‘π )]π π 2I=β«_0^πβπππ[1βcos^2β‘π₯ ]ππ₯ 2I=β«_0^πβπππ(γπ ππγ^2β‘π₯ )ππ₯ Using log π^π=π πππβ‘π 2I=β«_0^πβγ2 πππ(π ππβ‘π₯ )ππ₯γ 2I=2β«_0^πβπππ(π ππβ‘π₯ )ππ₯ π=β«_π^π βπππ(πππβ‘π )π π Here, π(π)=logβ‘sinβ‘π₯ f(π βπ)=πππ[π ππ(πβπ₯)]ππ₯ =πππ(sinβ‘π₯ )ππ₯ =π(π) Therefore, I=β«_π^π βπππ(π¬π’π§β‘π )π π=πβ«_π^(π /π)βπππ(πππβ‘π )π π Let I1=β«_0^(π/2 )βπππ(π πππ₯) ππ₯ Solving ππ I1=β«_0^(π/2 )βπππ(π πππ₯) ππ₯ β΄ I1=β«_π^(π /π)βπππ(π /πβπ)π π I1= β«_π^(π /π)βπππ(πππβ‘π )π π Adding (2) and (3) i.e. (2) + (3) ππ + ππ =β«_π^(π /π)βγπππ(πππβ‘π )π π+β«_π^(π /π)βπππ(ππ¨π¬β‘π )π πγ "Using" πππβ‘π + πππβ‘π = πππβ‘(π.π) 2I1 =β«_π^(π /π)βγπ₯π¨π β‘[π¬π’π§β‘γπ ππ¨π¬β‘π γ ] π πγ 2I1 = β«_π^(π /π)βγπππβ‘[ππππβ‘γπ πππβ‘π γ/π] π πγ "Using " πππ(π/π) = logβ‘(π) β logβ‘(π)) 2I1 = β«_0^(π/2)β[log[2sinβ‘γπ₯ cosβ‘π₯ γ ]βπππ(2)]ππ₯ "Using" πππβ‘ππ=2 sinβ‘γπ₯ cosβ‘π₯ γ 2I1 = β«_0^(π/2)β[log[sinβ‘2π₯ ]βπππ2]ππ₯ 2I1 = β«_π^(π /π)βπ₯π¨π [πππβ‘ππ ]π πββ«_0^(π/2)βlog(2)ππ₯ Solving ππ ππ=β«_π^(π /π)βγπ₯π¨π πππβ‘ππ π πγ Let 2π₯=π‘ Differentiating both sides w.r.t.π₯ 2=ππ‘/ππ₯ ππ₯=ππ‘/2 β΄ Putting the values of t and ππ‘ and changing the limits, I2 =β«_0^(π/2)βlog(sinβ‘2π₯ )ππ₯ I2 = β«_0^πβγlog(sinβ‘π‘ ) ππ‘/2γ ππ = π/π β«_π^π βπ₯π¨π (πππβ‘π )π π Here, π(π‘)=logβ‘π πππ‘ π(2πβπ‘)=π(2πβπ‘)=logβ‘π ππ(2πβπ‘)=logβ‘sinβ‘π‘ As, π(π)=π(ππβπ) β΄ ππ = 1/2 β«_0^πβlogβ‘sinβ‘γπ‘ ππ‘γ =π/π Γ πβ«_π^(π /π)βπππβ‘πππβ‘γπ. π πγ =β«_0^(π/2)βlogβ‘sinβ‘γπ‘. ππ‘γ =β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ Putting the value of I2 in equation (3), we get 2I1 =β«_π^(π /π)βπ₯π¨π [πππβ‘ππ ]β‘π π ββ«_0^(π/2)βlog(2)β‘ππ₯ 2I1 = β«_π^(π /π)βπ₯π¨π (πππβ‘π )β‘π π βlog(2) β«_π^(π /π)βγπ.γβ‘π π 2I1 = I1 β log(2) [π₯]_0^(π/2) 2I1βI1=βlogβ‘2 [π/2β0] ππ=βπππβ‘π [π /π] Hence, π=2 I1= 2 Γ (βπ)/2 logβ‘2 =βπ πππβ‘π