# Ex 7.11, 18 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at Dec. 20, 2019 by Teachoo

Ex 7.11

Ex 7.11, 1

Ex 7.11, 2

Ex 7.11, 3 Important

Ex 7.11, 4

Ex 7.11, 5 Important

Ex 7.11, 6

Ex 7.11,7 Important

Ex 7.11,8 Important

Ex 7.11, 9

Ex 7.11, 10 Important

Ex 7.11, 11 Important

Ex 7.11, 12 Important

Ex 7.11, 13

Ex 7.11, 14

Ex 7.11, 15

Ex 7.11, 16 Important

Ex 7.11, 17

Ex 7.11, 18 Important You are here

Ex 7.11, 19

Ex 7.11, 20 (MCQ) Important

Ex 7.11, 21 (MCQ) Important

Chapter 7 Class 12 Integrals

Serial order wise

Last updated at Dec. 20, 2019 by Teachoo

Ex 7.11, 18 By using the properties of definite integrals, evaluate the integrals : β«_0^4β|π₯β1| ππ₯ |π₯β1|= {β( (π₯β1) ππ π₯β1β₯[email protected]β(π₯β1) ππ π₯β1<0)β€ = {β((π₯β1,) ππ π₯β₯[email protected]β(π₯β1) ππ π₯<1)β€ β΄ β«_0^4β|π₯β1|ππ₯=β«_0^1β|π₯β1|ππ₯+β«_1^4β|π₯β1|ππ₯ Using the property, P2 P2 :- β«_π^πβγπ(π₯)ππ₯=γ β«_π^πβγπ(π₯)ππ₯+β«_π^πβπ(π₯)ππ₯γ =β«_0^1βγβ(π₯β1)ππ₯+γ β«_1^4β(π₯β1)ππ₯ =β«_0^1βγ(βπ₯+1)ππ₯+γ β«_1^4β(π₯β1)ππ₯ =β«_0^1βγβπ₯ ππ₯+γ β«_0^1βγ1. ππ₯+β«_1^4βγπ₯ . ππ₯ββ«_1^4βγ1.ππ₯γγγ =β[π₯^2/2]_0^1+[π₯]_0^1β[π₯^2/2]_1^4β[π₯]_1^4 =β[((1)^2 β 0)/2]+[1β0]+[((4)^2β(1)^2)/2]β[4β1] =β1/2+1+[(16 β 1)/2]β3 =β1/2+15/2β3+1 =(14 )/2β2= 7 β 2 = 5