Check sibling questions

Ex 7.11, 18 Class 12 - Evaluate definite integral |x - 1| from 0 to 4

Ex 7.11, 18 - Chapter 7 Class 12 Integrals - Part 2

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 7.10, 18 By using the properties of definite integrals, evaluate the integrals : ∫_0^4β–’|π‘₯βˆ’1| 𝑑π‘₯ |π‘₯βˆ’1|= {β–ˆ( (π‘₯βˆ’1) 𝑖𝑓 π‘₯βˆ’1β‰₯0@βˆ’(π‘₯βˆ’1) 𝑖𝑓 π‘₯βˆ’1<0)─ = {β–ˆ((π‘₯βˆ’1,) 𝑖𝑓 π‘₯β‰₯1@βˆ’(π‘₯βˆ’1) 𝑖𝑓 π‘₯<1)─ ∴ ∫_0^4β–’|π‘₯βˆ’1|𝑑π‘₯=∫_0^1β–’|π‘₯βˆ’1|𝑑π‘₯+∫_1^4β–’|π‘₯βˆ’1|𝑑π‘₯ Using the property, P2 P2 :- ∫_π‘Ž^𝑏▒〖𝑓(π‘₯)𝑑π‘₯=γ€— ∫_π‘Ž^𝑐▒〖𝑓(π‘₯)𝑑π‘₯+∫_𝑐^𝑏▒𝑓(π‘₯)𝑑π‘₯γ€— =∫_0^1β–’γ€–βˆ’(π‘₯βˆ’1)𝑑π‘₯+γ€— ∫_1^4β–’(π‘₯βˆ’1)𝑑π‘₯ =∫_0^1β–’γ€–(βˆ’π‘₯+1)𝑑π‘₯+γ€— ∫_1^4β–’(π‘₯βˆ’1)𝑑π‘₯ =∫_0^1β–’γ€–βˆ’π‘₯ 𝑑π‘₯+γ€— ∫_0^1β–’γ€–1. 𝑑π‘₯+∫_1^4β–’γ€–π‘₯ . 𝑑π‘₯βˆ’βˆ«_1^4β–’γ€–1.𝑑π‘₯γ€—γ€—γ€— =βˆ’[π‘₯^2/2]_0^1+[π‘₯]_0^1βˆ’[π‘₯^2/2]_1^4βˆ’[π‘₯]_1^4 =βˆ’[((1)^2 βˆ’ 0)/2]+[1βˆ’0]+[((4)^2βˆ’(1)^2)/2]βˆ’[4βˆ’1] =βˆ’1/2+1+[(16 βˆ’ 1)/2]βˆ’3 =βˆ’1/2+15/2βˆ’3+1 =(14 )/2βˆ’2= 7 βˆ’ 2 = 5

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.