
Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3 Important
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important You are here
Ex 7.11,8 Important
Ex 7.11, 9
Ex 7.11, 10 Important
Ex 7.11, 11 Important
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15
Ex 7.11, 16 Important
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 (MCQ) Important
Ex 7.11, 21 (MCQ) Important
Last updated at March 16, 2023 by Teachoo
Ex 7.11,7 By using the properties of definite integrals, evaluate the integrals : β«_0^1βγ π₯(1βπ₯)^π γ ππ₯ Let I=β«_0^1βγπ₯(1βπ₯)^π ππ₯γ β΄ I=β«_0^1βγ(1βπ₯) [1β(1βπ₯)]^π ππ₯γ I=β«_0^1βγ(1βπ₯) [1β1+π₯]^π ππ₯γ I=β«_0^1βγ(1βπ₯) [π₯]^π ππ₯γ I= β«_0^1βγ(1βπ₯) γ π₯γ^π ππ₯γ Using P4 : β«_0^πβγπ(π₯)ππ₯=γ β«_0^πβπ(πβπ₯)ππ₯ I= β«_0^1βγ(γ π₯γ^πβ π₯^(π + 1) ) ππ₯γ I= β«_0^1βγγ π₯γ^π ππ₯γββ«_0^1βγγ π₯γ^(π + 1) ππ₯γ I=[π₯^(π + 1)/(π + 1)]_0^1β[π₯^(π + 2)/(π + 2)]_0^1 I=[(1)^(π + 1)/(π + 1)β(0)^(π + 1)/(π + 1)]β[(1)^(π + 2)/(π + 2)β(0)^(π + 2)/(π + 2)] I= 1/(π + 1)β1/(π + 2) I=(π + 2 β (π + 1))/(π + 1)(π + 2) π=π/(π + π)(π + π)