Check sibling questions

Ex 7.11, 7 - Evaluate using properties x (1 - x)n dx - Ex 7.11

Ex 7.11,7 - Chapter 7 Class 12 Integrals - Part 2

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 7.11,7 By using the properties of definite integrals, evaluate the integrals : ∫_0^1β–’γ€– π‘₯(1βˆ’π‘₯)^𝑛 γ€— 𝑑π‘₯ Let I=∫_0^1β–’γ€–π‘₯(1βˆ’π‘₯)^𝑛 𝑑π‘₯γ€— ∴ I=∫_0^1β–’γ€–(1βˆ’π‘₯) [1βˆ’(1βˆ’π‘₯)]^𝑛 𝑑π‘₯γ€— I=∫_0^1β–’γ€–(1βˆ’π‘₯) [1βˆ’1+π‘₯]^𝑛 𝑑π‘₯γ€— I=∫_0^1β–’γ€–(1βˆ’π‘₯) [π‘₯]^𝑛 𝑑π‘₯γ€— I= ∫_0^1β–’γ€–(1βˆ’π‘₯) γ€– π‘₯γ€—^𝑛 𝑑π‘₯γ€— Using P4 : ∫_0^π‘Žβ–’γ€–π‘“(π‘₯)𝑑π‘₯=γ€— ∫_0^π‘Žβ–’π‘“(π‘Žβˆ’π‘₯)𝑑π‘₯ I= ∫_0^1β–’γ€–(γ€– π‘₯γ€—^π‘›βˆ’ π‘₯^(𝑛 + 1) ) 𝑑π‘₯γ€— I= ∫_0^1β–’γ€–γ€– π‘₯γ€—^𝑛 𝑑π‘₯γ€—βˆ’βˆ«_0^1β–’γ€–γ€– π‘₯γ€—^(𝑛 + 1) 𝑑π‘₯γ€— I=[π‘₯^(𝑛 + 1)/(𝑛 + 1)]_0^1βˆ’[π‘₯^(𝑛 + 2)/(𝑛 + 2)]_0^1 I=[(1)^(𝑛 + 1)/(𝑛 + 1)βˆ’(0)^(𝑛 + 1)/(𝑛 + 1)]βˆ’[(1)^(𝑛 + 2)/(𝑛 + 2)βˆ’(0)^(𝑛 + 2)/(𝑛 + 2)] I= 1/(𝑛 + 1)βˆ’1/(𝑛 + 2) I=(𝑛 + 2 βˆ’ (𝑛 + 1))/(𝑛 + 1)(𝑛 + 2) 𝐈=𝟏/(𝒏 + 𝟏)(𝒏 + 𝟐)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.