Ex 7.10, 4 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important
Ex 7.10, 4 You are here
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 4 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)β(cos^5β‘π₯ ππ₯)/(sin^5β‘π₯ + cos^5β‘π₯ ) Let I=β«_0^(π/2)βγcos^5β‘π₯/(sin^5β‘π₯ + cos^5β‘π₯ ) ππ₯γ I= β«_0^(π/2)βγ(cos^5 (π/2 β π₯))/(γπ ππγ^5 (π/2 β π₯) + γπππ γ^5 (π/2 β π₯) ) ππ₯γ β΄ I = β«_0^(π/2)βγ sin^5β‘π₯/(cos^5β‘π₯ + sin^5β‘π₯ ) ππ₯γ Adding (1) and (2) i.e. (1) + (2) I+I=(γπππ γ^5 π₯)/(γπ ππγ^5 π₯ + γπππ γ^5 π₯) ππ₯+β«_0^(π/2)βγsin^5β‘π₯/(cos^5β‘π₯ + sin^5β‘π₯ ) ππ₯γ 2I=β«_0^(π/2)βγ[(γπππ γ^5 π₯ + γπ ππγ^5 π₯)/(γπππ γ^5 π₯ + γπ ππγ^5 π₯)] ππ₯γ 2I= β«_0^(π/2)βγ ππ₯γ I=1/2 β«_0^(π/2)βγ ππ₯γ I=1/2 [π₯]_0^(π/2) I=1/2 [π/2β0] π°=π /π