

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.4, 1 (3𝑥^2)/(𝑥^6 + 1) We need to find ∫1▒(𝟑𝒙^𝟐)/(𝒙^𝟔 + 𝟏) 𝒅𝒙 Let 𝒙^𝟑=𝒕 Diff both sides w.r.t. x 3𝑥^2=𝑑𝑡/𝑑𝑥 𝒅𝒙=𝒅𝒕/(𝟑𝒙^𝟐 ) Thus, our equation becomes ∫1▒(𝟑𝒙^𝟐)/(𝒙^𝟔 + 𝟏) 𝒅𝒙 =∫1▒(3𝑥^2)/((𝑥^3 )^2 + 1) 𝑑𝑥 Putting the value of 𝑥^3=𝑡 and 𝑑𝑥=𝑑𝑡/(3𝑥^2 ) =∫1▒(3𝑥^2)/(𝑡^2 + 1) .𝑑𝑡/(3𝑥^2 ) =∫1▒𝑑𝑡/(𝑡^2 + 1) =∫1▒𝒅𝒕/(𝒕^𝟐 + (𝟏)^𝟐 ) =1/1 tan^(−1)〖 𝑡/1 〗+𝐶 It is of form ∫1▒𝑑𝑡/(𝑥^2 + 𝑎^2 ) =1/𝑎 〖〖𝑡𝑎𝑛〗^(−1) 〗〖𝑥/𝑎〗 +𝐶 ∴ Replacing 𝑥 = 𝑡 and 𝑎 by 1 , we get =tan^(−1)〖 (𝑡)〗+𝐶 =〖〖𝒕𝒂𝒏〗^(−𝟏) 〗(𝒙^𝟑 )+𝑪 ("Using" 𝑡=𝑥^3 )