This video is only available for Teachoo black users

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Ex 7.4, 1 (3๐‘ฅ^2)/(๐‘ฅ^6 + 1) We need to find โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ Let ๐’™^๐Ÿ‘=๐’• Diff both sides w.r.t. x 3๐‘ฅ^2=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐’…๐’™=๐’…๐’•/(๐Ÿ‘๐’™^๐Ÿ ) Thus, our equation becomes โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ =โˆซ1โ–’(3๐‘ฅ^2)/((๐‘ฅ^3 )^2 + 1) ๐‘‘๐‘ฅ Putting the value of ๐‘ฅ^3=๐‘ก and ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’(3๐‘ฅ^2)/(๐‘ก^2 + 1) .๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’๐‘‘๐‘ก/(๐‘ก^2 + 1) =โˆซ1โ–’๐’…๐’•/(๐’•^๐Ÿ + (๐Ÿ)^๐Ÿ ) =1/1 tan^(โˆ’1)โกใ€– ๐‘ก/1 ใ€—+๐ถ It is of form โˆซ1โ–’๐‘‘๐‘ก/(๐‘ฅ^2 + ๐‘Ž^2 ) =1/๐‘Ž ใ€–ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) ใ€—โกใ€–๐‘ฅ/๐‘Žใ€— +๐ถ โˆด Replacing ๐‘ฅ = ๐‘ก and ๐‘Ž by 1 , we get =tan^(โˆ’1)โกใ€– (๐‘ก)ใ€—+๐ถ =ใ€–ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) ใ€—โก(๐’™^๐Ÿ‘ )+๐‘ช ("Using" ๐‘ก=๐‘ฅ^3 )

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.