Ex 7.4

Ex 7.4, 1
You are here

Ex 7.4, 2 Important

Ex 7.4, 3

Ex 7.4, 4

Ex 7.4, 5 Important

Ex 7.4, 6

Ex 7.4, 7

Ex 7.4, 8 Important

Ex 7.4, 9

Ex 7.4, 10

Ex 7.4, 11 Important

Ex 7.4, 12

Ex 7.4, 13 Important

Ex 7.4, 14

Ex 7.4, 15 Important

Ex 7.4, 16

Ex 7.4, 17 Important

Ex 7.4, 18

Ex 7.4, 19 Important

Ex 7.4, 20

Ex 7.4, 21 Important

Ex 7.4, 22

Ex 7.4, 23 Important

Ex 7.4, 24 (MCQ)

Ex 7.4, 25 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Ex 7.4, 1 (3๐ฅ^2)/(๐ฅ^6 + 1) We need to find โซ1โ(๐๐^๐)/(๐^๐ + ๐) ๐ ๐ Let ๐^๐=๐ Diff both sides w.r.t. x 3๐ฅ^2=๐๐ก/๐๐ฅ ๐ ๐=๐ ๐/(๐๐^๐ ) Thus, our equation becomes โซ1โ(๐๐^๐)/(๐^๐ + ๐) ๐ ๐ =โซ1โ(3๐ฅ^2)/((๐ฅ^3 )^2 + 1) ๐๐ฅ Putting the value of ๐ฅ^3=๐ก and ๐๐ฅ=๐๐ก/(3๐ฅ^2 ) =โซ1โ(3๐ฅ^2)/(๐ก^2 + 1) .๐๐ก/(3๐ฅ^2 ) =โซ1โ๐๐ก/(๐ก^2 + 1) =โซ1โ๐ ๐/(๐^๐ + (๐)^๐ ) =1/1 tan^(โ1)โกใ ๐ก/1 ใ+๐ถ It is of form โซ1โ๐๐ก/(๐ฅ^2 + ๐^2 ) =1/๐ ใใ๐ก๐๐ใ^(โ1) ใโกใ๐ฅ/๐ใ +๐ถ โด Replacing ๐ฅ = ๐ก and ๐ by 1 , we get =tan^(โ1)โกใ (๐ก)ใ+๐ถ =ใใ๐๐๐ใ^(โ๐) ใโก(๐^๐ )+๐ช ("Using" ๐ก=๐ฅ^3 )