Ex 7.4, 1 - Integrate 3x2 / x6 + 1 - Chapter 7 Class 12 - Ex 7.4 - Ex 7.4

part 2 - Ex 7.4, 1 - Ex 7.4 - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Ex 7.4, 1 - Ex 7.4 - Serial order wise - Chapter 7 Class 12 Integrals

Remove Ads

Transcript

Ex 7.4, 1 (3๐‘ฅ^2)/(๐‘ฅ^6 + 1) We need to find โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ Let ๐’™^๐Ÿ‘=๐’• Diff both sides w.r.t. x 3๐‘ฅ^2=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐’…๐’™=๐’…๐’•/(๐Ÿ‘๐’™^๐Ÿ ) Thus, our equation becomes โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ =โˆซ1โ–’(3๐‘ฅ^2)/((๐‘ฅ^3 )^2 + 1) ๐‘‘๐‘ฅ Putting the value of ๐‘ฅ^3=๐‘ก and ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’(3๐‘ฅ^2)/(๐‘ก^2 + 1) .๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’๐‘‘๐‘ก/(๐‘ก^2 + 1) =โˆซ1โ–’๐’…๐’•/(๐’•^๐Ÿ + (๐Ÿ)^๐Ÿ ) =1/1 tan^(โˆ’1)โกใ€– ๐‘ก/1 ใ€—+๐ถ It is of form โˆซ1โ–’๐‘‘๐‘ก/(๐‘ฅ^2 + ๐‘Ž^2 ) =1/๐‘Ž ใ€–ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) ใ€—โกใ€–๐‘ฅ/๐‘Žใ€— +๐ถ โˆด Replacing ๐‘ฅ = ๐‘ก and ๐‘Ž by 1 , we get =tan^(โˆ’1)โกใ€– (๐‘ก)ใ€—+๐ถ =ใ€–ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) ใ€—โก(๐’™^๐Ÿ‘ )+๐‘ช ("Using" ๐‘ก=๐‘ฅ^3 )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo