Ex 7.4, 7 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7 You are here
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.4, 7 𝑥 − 1 𝑥2 − 1 Integrating the function 𝑤.𝑟.𝑡.𝑥 𝑥 − 1 𝑥2 − 1 𝑑𝑥 = 𝑥 𝑥2 − 1 − 1 𝑥2 − 1 𝑑𝑥 = 𝑥 𝑥2 − 1 𝑑𝑥− 1 𝑥2 − 1 𝑑𝑥 Solving 𝐈𝟏 I1 = 𝑥 𝑥2 − 1 𝑑𝑥 Let 𝑥2 − 1=𝑡 Diff both sides w.r.t.x 2𝑥−0= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡2𝑥 Thus, our equation becomes ∴ I1 = 𝑥 𝑥2 − 1 𝑑𝑥 Put the values of 𝑥2 −1=𝑡 and 𝑑𝑥= 𝑑𝑡2𝑥 I1 = 𝑥 𝑡 . 𝑑𝑡2𝑥 I1 = 12 1 𝑡 𝑑𝑡 I1 = 12 1 𝑡 12 𝑑𝑡 I1 = 12 𝑡 −12 𝑑𝑡 I1 = 12 𝑡 −12 + 1 −12 + 1+𝐶1 I1 = 12 . 𝑡 12 12+𝐶1 I1 = 𝑡 12+𝐶1 I1 = 𝑡+𝐶1 I1 = 𝑥2−1 +𝐶1 Solving 𝐈𝟐 I2 = 1 𝑥2 − 1 𝑑𝑥 I2 = 1 𝑥2 − 12 𝑑𝑥 I2 = log 𝑥+ 𝑥2 − 12+𝐶2 I2 = log 𝑥+ 𝑥2 −1 +𝐶2 Now, putting the value of I1 and I2 in eq. (1) 𝑥 − 1 𝑥2 − 1 𝑑𝑥= 𝑥 𝑥2 − 1 𝑑𝑥− 1 𝑥2 − 1 𝑑𝑥 = 𝑥2−1 +𝐶1− log 𝑥+ 𝑥2 −1 +𝐶2 = 𝑥2−1 +𝐶1− log 𝑥+ 𝑥2 −1 −𝐶2 = 𝒙𝟐−𝟏 − 𝒍𝒐𝒈 𝒙+ 𝒙𝟐 −𝟏 −𝑪