Ex 7.4, 21 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important You are here
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.4, 21 Integrate the function (𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) ∫1▒(𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥 =1/2 ∫1▒(2𝑥 + 4)/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥 =1/2 ∫1▒(2𝑥 + 2 + 4 − 2)/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥 =1/2 ∫1▒(2𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥+2/2 ∫1▒𝑑𝑥/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥 =1/2 ∫1▒(2𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥+∫1▒𝑑𝑥/√(𝑥^2 + 2𝑥 + 3) 𝑑𝑥 Rough (𝑥^2+2𝑥+3)^′=2𝑥+2 Solving 𝑰𝟏 I1=1/2 ∫1▒(2𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) . 𝑑𝑥 Let 𝑥^2 + 2𝑥 + 3=𝑡 Diff both sides w.r.t.x 2𝑥+2+0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/(2𝑥 + 2) Now, our equation becomes I1=1/2 ∫1▒(2𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3) . 𝑑𝑥 Putting the value of (4𝑥−𝑥^2 ) and 𝑑𝑥 I1=1/2 ∫1▒(2𝑥 + 2)/√𝑡 . 𝑑𝑥 I1=1/2 ∫1▒(2𝑥 + 2)/√𝑡 . 𝑑𝑡/(2𝑥 + 2) I1=1/2 ∫1▒1/√𝑡 . 𝑑𝑡 I1=1/2 ∫1▒1/(𝑡)^(1/2) . 𝑑𝑡 I1=1/2 ∫1▒(𝑡)^((− 1)/2) . 𝑑𝑡 I1=1/2 〖𝑡 〗^((−1)/2 + 1)/((−1)/2 + 1) +𝐶1 I1= 𝑡 ^(1/2 )+𝐶1 I1= √𝑡+𝐶1 I1=√(𝑥^2+2𝑥+3)+𝐶 Solving 𝑰𝟐 I2=∫1▒1/√(𝑥^2 + 2𝑥 + 3) . 𝑑𝑥 I2=∫1▒1/√(𝑥^2 + 2(𝑥)(1) + 3) . 𝑑𝑥 I2=∫1▒1/√(𝑥^2 + 2(𝑥)(1) − (1)^2 + (1)^2 + 3) . 𝑑𝑥 (Using 𝑡=𝑥^2+2𝑥+3) I2=∫1▒1/√((𝑥 + 1)^2 − (1)^2 + 3) . 𝑑𝑥 I2=∫1▒1/√((𝑥 + 1)^2 − 1 + 3) . 𝑑𝑥 I2=∫1▒1/√((𝑥 + 1)^2 + 2) . 𝑑𝑥 I2=∫1▒1/√((𝑥 + 1)^2 +(√2 )^2 ) . 𝑑𝑥 I2=𝑙𝑜𝑔|𝑥+1+√((𝑥 + 1)^2+(√2 )^2 )|+𝐶2 It is of form ∫1▒𝑑𝑥/√(𝑥^2 + 𝑎^2 ) =𝑙𝑜𝑔|𝑥+√(𝑥^2 + 𝑎^2 )|+𝐶2 ∴ Replacing x by (𝑥 + 1) and a by √2 , we get I2=𝑙𝑜𝑔|𝑥+1+√(𝑥^2+2𝑥+1+2)|+𝐶2 I2=𝑙𝑜𝑔|𝑥+1+√(𝑥^2+2𝑥+3)|+𝐶2 Putting the values of I1 and I2 in (1) ∫1▒〖(𝑥 + 2)/√(𝑥^2 + 2𝑥 + 3).〗 . 𝑑𝑥 = 𝐼_1+𝐼_2 =√(𝑥^2+2𝑥+3)+𝐶1+𝑙𝑜𝑔|𝑥+1+√(𝑥^2+2𝑥+3)|+𝐶2 =√(𝒙^𝟐+𝟐𝒙+𝟑)+𝒍𝒐𝒈|𝒙+𝟏+√(𝒙^𝟐+𝟐𝒙+𝟑)|+𝑪