Ex 7.4, 15 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important You are here
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.4, 15 Integrate the function 1/√((𝑥 − 𝑎)(𝑥 − 𝑏)) ∫1▒1/√((𝑥 − 𝑎) (𝑥 − 𝑏)) 𝑑𝑥 =∫1▒1/√(𝑥(𝑥 − 𝑎) − 𝑎(𝑥 − 𝑏)) 𝑑𝑥 =∫1▒1/√(𝑥^2 − 𝑏𝑥 − 𝑎𝑥 + 𝑎𝑏) 𝑑𝑥 =∫1▒1/√(𝑥^2 − 𝑥(𝑎 + 𝑏) + 𝑎𝑏) 𝑑𝑥 =∫1▒1/√(𝑥^2 − 2(𝑥)((𝑎 + 𝑏)/2) + 𝑎𝑏) 𝑑𝑥 =∫1▒1/√(𝑥^2 − 2(𝑥)((𝑎 + 𝑏)/2) + ((𝑎 + 𝑏)/2)^2− ((𝑎 + 𝑏)/2)^2+ 𝑎𝑏) 𝑑𝑥 =∫1▒1/√((𝑥 − (𝑎 + 𝑏)/2)^2 − ((𝑎 + 𝑏)/2)^2+ 𝑎𝑏) 𝑑𝑥 =∫1▒1/√((𝑥 − (𝑎 + 𝑏)/2)^2 − ((𝑎^2 + 𝑏^2+ 2𝑎𝑏)/4) + 𝑎𝑏) 𝑑𝑥 =∫1▒1/√((𝑥 − (𝑎 + 𝑏)/2)^2+ (− 𝑎^2 − 𝑏^2 − 2𝑎𝑏 + 4𝑎𝑏)/4) 𝑑𝑥 =∫1▒1/√((𝑥 − (𝑎 + 𝑏)/2)^2 + (− 𝑎^2 − 𝑏^2 + 2𝑎𝑏)/4) 𝑑𝑥 =∫1▒1/(√((𝑥 − (𝑎 + 𝑏)/2)^2 − ((𝑎^2 + 𝑏^2 − 2𝑎𝑏)/4) ) ) 𝑑𝑥 =∫1▒1/(√((𝑥 − (𝑎 + 𝑏)/2)^2 − ((𝑎 − 𝑏)/2)^2 ) ) 𝑑𝑥 =𝑙𝑜𝑔|𝑥 − (𝑎 + 𝑏)/2 +√((𝑥 − (𝑎 + 𝑏)/2)^2− ((𝑎 − 𝑏)/2)^2 )|+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2+((𝑎 + 𝑏)/2)^2−2(𝑥)((𝑎 + 𝑏)/2)−((𝑎 − 𝑏)/2)^2 )|+𝐶 It is of form ∫1▒𝑑𝑥/√(𝑥^2 − 𝑎^2 ) =𝑙𝑜𝑔|𝑥+√(𝑥^2−𝑎^2 )|+𝐶 ∴ Replacing 𝑥 by (𝑥− (𝑎 + 𝑏)/2) and a by ((𝑎 − 𝑏)/2) , we get =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−2(𝑥)((𝑎 + 𝑏)/2)+((𝑎 + 𝑏)/2)^2−((𝑎 − 𝑏)/2)^2 )|+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−𝑥(𝑎+𝑏)+(𝑎^2 + 𝑏^2 + 2𝑎𝑏)/4−(𝑎^2 + 𝑏^2 − 2𝑎𝑏)/4)|+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−𝑥(𝑎+𝑏)+2𝑎𝑏/4+2𝑎𝑏/4) |+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−𝑥(𝑎+𝑏)+4𝑎𝑏/4) |+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−𝑥(𝑎+𝑏)+𝑎𝑏) |+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥^2−𝑎𝑥−𝑏𝑥+𝑎𝑏) |+𝐶 =𝑙𝑜𝑔|𝑥− (𝑎 + 𝑏)/2 +√(𝑥(𝑥−𝑎)−𝑏(𝑥−𝑎) ) |+𝐶 =𝒍𝒐𝒈|𝒙− (𝒂 + 𝒃)/𝟐 +√((𝒙−𝒂)(𝒙−𝒃) ) |+𝑪