



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important You are here
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.4, 17 Integrate the function (𝑥 + 2)/√(𝑥^2 − 1) ∫1▒(𝑥 + 2)/√(𝑥^2 − 1) . 𝑑𝑥=∫1▒(1/2 (2𝑥) + 2" " )/√(𝑥^2 − 1) . 𝑑𝑥 =∫1▒(1/2 (2𝑥))/√(𝑥^2 − 1) . 𝑑𝑥+∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 =1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) . 𝑑𝑥+∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 Solving 𝑰𝟏 I1=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) 𝑑𝑥 …(1) Let 𝑥^2−1=𝑡 Differentiating w.r.t. x 2𝑥−0=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Thus, our equation becomes I1=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) 𝑑𝑥 Put the values of (𝑥^2−1)=𝑡 and 𝑑𝑥, we get I1=1/2 ∫1▒( 2𝑥)/√𝑡 𝑑𝑥 I1=1/2 ∫1▒( 2𝑥)/√𝑡 × 𝑑𝑡/2𝑥 I1=1/2 ∫1▒( 1)/√𝑡 𝑑𝑡 I1=1/2 ∫1▒1/𝑡^(1/2) 𝑑𝑡 I1=1/2 ∫1▒𝑡^((−1)/2) 𝑑𝑡 I1=1/2 𝑡^((−1)/2 + 1)/((−1)/2 + 1) +𝐶1 I1=1/2 𝑡^(1/2)/(1/2) +𝐶1 I1=𝑡^(1/2)+𝐶1 I1=√𝑡+𝐶1 I1=√(𝑥^2 − 1) + 𝐶1 Solving 𝑰𝟐 I2=∫1▒2/√(𝑥^2 − 1) . 𝑑𝑥 I2=2∫1▒1/√(𝑥^2 − (1)^2 ) . 𝑑𝑥 I2=2 𝑙𝑜𝑔|𝑥+√(𝑥^2 −1)|+𝐶2 It is of form ∫1▒𝑑𝑥/√(𝑥^2 − 𝑎^2 ) =𝑙𝑜𝑔|𝑥+√(𝑥^2 − 𝑎^2 )|+𝐶 ∴ Replacing a by 1 , we get ("Using " 𝑡=𝑥^2−1) Now, Putting the values of I1 and I2 in (1) ∫1▒(𝑥 + 2)/√(𝑥^2 − 1) . 𝑑𝑥=1/2 ∫1▒( 2𝑥)/√(𝑥^2 − 1) . 𝑑𝑥+2∫1▒1/√(𝑥^2 − 1) . 𝑑𝑥 =√(𝑥^2 − 1) + 𝐶1+2 𝑙𝑜𝑔|𝑥+√(𝑥^2 −1) |+𝐶2 =√(𝒙^𝟐 − 𝟏)+𝟐 𝒍𝒐𝒈|𝒙+√(𝒙^𝟐 −𝟏)|+ 𝑪