Integration Full Chapter Explained - Integration Class 12 - Everything you need


Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.4, 8 Integrate ๐ฅ^2/โ(๐ฅ^6 + ๐^6 ) Let ๐ฅ^3=๐ก Differentiating both sides w.r.t. x 3๐ฅ^2=๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก/(3๐ฅ^2 ) Integrating the function โซ1โ๐ฅ^2/โ(๐ฅ^6 + ๐^6 ) ๐๐ฅ=โซ1โ๐ฅ^2/โ((๐ฅ^3 )^2 + (๐^3 )^2 ) ๐๐ฅ Putting values of ๐ฅ^3=๐ก and ๐๐ฅ=๐๐ก/(3๐ฅ^2 ) , we get =โซ1โ๐ฅ^2/โ(๐ก^2 + (๐^3 )^2 ) ๐๐ฅ =โซ1โ๐ฅ^2/โ(๐ก^2 + (๐^3 )^2 ) . ๐๐ก/(3๐ฅ^2 ) =โซ1โ1/โ((๐ก^2 + (๐^3 )^2 ) ) . ๐๐ก/3 =1/3 โซ1โ๐๐ก/โ(๐ก^2 + (๐^3 )^2 ) =1/3 [logโก|๐ก+โ(๐ก^2 + (๐^3 )^2 )|+๐ถ1] It is of form โซ1โ๐๐ฅ/โ(๐ฅ^2 + ๐^2 ) =logโก|๐ฅ+โ(๐ฅ^2 + ๐^2 )|+๐ถ1 โด Replacing ๐ฅ by ๐ก and a by ๐^3, we get =1/3 logโก|๐ก+โ(๐ก^2 + ๐^6 ) |+๐ถ =1/3 logโก|๐ฅ^3+โ((๐ฅ^3 )^2 + ๐^6 ) |+๐ถ =๐/๐ ๐๐๐โก|๐^๐+โ(๐^๐+ ๐^๐ ) |+๐ช ("Using" ๐ก=๐ฅ^3 )
Ex 7.4
Ex 7.4, 2
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important You are here
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11
Ex 7.4, 12
Ex 7.4, 13
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22 Important
Ex 7.4, 23 Important
Ex 7.4, 24
Ex 7.4, 25 Important
About the Author