Ex 7.4, 5 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important You are here
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Ex 7.4, 5 3𝑥/(1 + 2𝑥4) Let 𝑥^2=𝑡 Differentiating both sides 2𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Integrating the function 𝑤.𝑟.𝑡.𝑥 ∫1▒(3𝑥 )/(1 + 2𝑥^4 ) 𝑑𝑥 =∫1▒3𝑥/(1 + 2(𝑥^2 )^2 ) 𝑑𝑥 Putting value of 𝑥^2=𝑡 and 𝑑𝑥=𝑑𝑡/2𝑥 =∫1▒3𝑥/(1 + 2𝑡^2 ) 𝑑𝑥 =∫1▒3𝑥/(1 + 2𝑡^2 )×𝑑𝑡/2𝑥 =3/2 ∫1▒𝑑𝑡/(1 + 2𝑡^2 ) =3/2 ∫1▒𝑑𝑡/2(1/2 + 𝑡^2 ) =3/(2 . 2) ∫1▒𝑑𝑡/(1/2 + 𝑡^2 ) =3/4 ∫1▒𝑑𝑡/(𝑡^2 + 1/2). 𝑑𝑡 =3/4 ∫1▒𝑑𝑡/(𝑡^2 +(1/√2)^2 ). 𝑑𝑡