

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important You are here
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.4, 5 3𝑥/(1 + 2𝑥4) Let 𝑥^2=𝑡 Differentiating both sides 2𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=𝑑𝑡/2𝑥 Integrating the function 𝑤.𝑟.𝑡.𝑥 ∫1▒(3𝑥 )/(1 + 2𝑥^4 ) 𝑑𝑥 =∫1▒3𝑥/(1 + 2(𝑥^2 )^2 ) 𝑑𝑥 Putting value of 𝑥^2=𝑡 and 𝑑𝑥=𝑑𝑡/2𝑥 =∫1▒3𝑥/(1 + 2𝑡^2 ) 𝑑𝑥 =∫1▒3𝑥/(1 + 2𝑡^2 )×𝑑𝑡/2𝑥 =3/2 ∫1▒𝑑𝑡/(1 + 2𝑡^2 ) =3/2 ∫1▒𝑑𝑡/2(1/2 + 𝑡^2 ) =3/(2 . 2) ∫1▒𝑑𝑡/(1/2 + 𝑡^2 ) =3/4 ∫1▒𝑑𝑡/(𝑡^2 + 1/2). 𝑑𝑡 =3/4 ∫1▒𝑑𝑡/(𝑡^2 +(1/√2)^2 ). 𝑑𝑡