
Last updated at Dec. 8, 2016 by Teachoo
Transcript
Ex 7.4, 9 sec2𝑥 tan2𝑥 + 4 Let tan𝑥=𝑡 Diff both sides w.r.t. x sec2𝑥= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡 sec2𝑥 Integrating the function 𝑤.𝑟.𝑡.𝑥 sec2𝑥 tan2𝑥 + 4 Putting value of tan 𝑥=𝑡 and 𝑑𝑥= 𝑑𝑡 sec2𝑥 = sec2𝑥 t2+ 4 . 𝑑𝑡 sec2𝑥 = 1 t2+ 4 . 𝑑𝑡 = 1 t2+ 22 . 𝑑𝑡 = log 𝑡+ 𝑡2 + 22+𝐶 = log 𝑡+ 𝑡2 +4+𝐶 = 𝒍𝒐𝒈 𝒕𝒂𝒏𝒙+ 𝒕𝒂𝒏𝟐𝒙 +𝟒 +𝑪
Ex 7.4, 2
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9 You are here
Ex 7.4, 10
Ex 7.4, 11
Ex 7.4, 12
Ex 7.4, 13
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17
Ex 7.4, 18
Ex 7.4, 19
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22 Important
Ex 7.4, 23
Ex 7.4, 24
Ex 7.4, 25 Important
About the Author