

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important You are here
Last updated at Aug. 9, 2021 by Teachoo
Ex 7.4, 25 β«1βππ₯/β(9π₯ β 4π₯^2 ) equals A. 1/9 sinβ1 ((9π₯ β 8)/8) + C B. 1/9 sinβ1 ((8π₯ β 9)/9) + C C. 1/3 sinβ1 ((9π₯ β 8)/8) + C D. 1/2 sinβ1 ((9π₯ β 8)/8) + C β«1βππ₯/β(9π₯ β 4π₯^2 ) =β«1βππ₯/β(β4(π₯^2 β 9/4 π₯) ) =β«1βππ₯/β(β4(π₯^2 β 2(π₯) (9/8)) ) (Taking β4 common) =β«1βππ₯/β(β4[π₯^2 β 2(π₯) (9/8) + (9/8)^2β (9/8)^2 ] ) =β«1βππ₯/β(β4[(π₯ β 9/8)^2β (9/8)^2 ] ) =β«1βππ₯/β(4[(9/8)^2 β (π₯ β 9/8)^2 ] ) =β«1βππ₯/(β4 β((9/8)^2 β (π₯ β 9/8)^2 )) =1/2 β«1βππ₯/β((9/8)^2 β (π₯ β 9/8)^2 ) It is of form β«1βππ₯/β(π^2 β π₯^2 ) =sin^(β1)β‘γπ₯/πγ +πΆ1 β΄ Replacing π₯ by (π₯β 9/8) and π by 9/8 , we get =1/2 [sin^(β1)β‘γ(π₯ β 9/8)/(9/8)γ +πΆ1] =1/2 sin^(β1)β‘[(π₯ β 9/8)/(9/8)] +πΆ =1/2 sin^(β1)β‘γ((8π₯ β 9)/8)/(9/8)γ +πΆ =1/2 sin^(β1)β‘γ(8π₯ β 9)/9γ +πΆ β΄ Option B is correct answer