

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important You are here
Last updated at May 29, 2023 by Teachoo
Ex 7.4, 25 β«1βππ₯/β(9π₯ β 4π₯^2 ) equals A. 1/9 sinβ1 ((9π₯ β 8)/8) + C B. 1/9 sinβ1 ((8π₯ β 9)/9) + C C. 1/3 sinβ1 ((9π₯ β 8)/8) + C D. 1/2 sinβ1 ((9π₯ β 8)/8) + C β«1βππ₯/β(9π₯ β 4π₯^2 ) =β«1βππ₯/β(β4(π₯^2 β 9/4 π₯) ) =β«1βππ₯/β(β4(π₯^2 β 2(π₯) (9/8)) ) (Taking β4 common) =β«1βππ₯/β(β4[π₯^2 β 2(π₯) (9/8) + (9/8)^2β (9/8)^2 ] ) =β«1βππ₯/β(β4[(π₯ β 9/8)^2β (9/8)^2 ] ) =β«1βππ₯/β(4[(9/8)^2 β (π₯ β 9/8)^2 ] ) =β«1βππ₯/(β4 β((9/8)^2 β (π₯ β 9/8)^2 )) =1/2 β«1βππ₯/β((9/8)^2 β (π₯ β 9/8)^2 ) It is of form β«1βππ₯/β(π^2 β π₯^2 ) =sin^(β1)β‘γπ₯/πγ +πΆ1 β΄ Replacing π₯ by (π₯β 9/8) and π by 9/8 , we get =1/2 [sin^(β1)β‘γ(π₯ β 9/8)/(9/8)γ +πΆ1] =1/2 sin^(β1)β‘[(π₯ β 9/8)/(9/8)] +πΆ =1/2 sin^(β1)β‘γ((8π₯ β 9)/8)/(9/8)γ +πΆ =1/2 sin^(β1)β‘γ(8π₯ β 9)/9γ +πΆ β΄ Option B is correct answer