
Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3 Important
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important
Ex 7.11,8 Important
Ex 7.11, 9
Ex 7.11, 10 Important
Ex 7.11, 11 Important
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15 You are here
Ex 7.11, 16 Important
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 (MCQ) Important
Ex 7.11, 21 (MCQ) Important
Last updated at March 16, 2023 by Teachoo
Ex 7.11, 15 By using the properties of definite integrals, evaluate the integrals : 0 𝜋2 sin𝑥 − cos𝑥1 + sin𝑥 cos𝑥 𝑑𝑥 Let I= 0 𝜋2 sin𝑥 − cos𝑥1 + sin𝑥 cos𝑥 𝑑𝑥 ∴ I= 0 𝜋2 𝑠𝑖𝑛 𝜋2 − 𝑥 − 𝑐𝑜𝑠 𝜋2 − 𝑥1 + 𝑠𝑖𝑛 𝜋2 − 𝑥 𝑐𝑜𝑠 𝜋2 − 𝑥 𝑑𝑥 I= 0 𝜋2 cos𝑥 − sin𝑥 1 + cos𝑥 sin𝑥 𝑑𝑥 Adding (1) and (2)i.e. (1) + (2) I+I= 0 𝜋2 sin𝑥 − cos𝑥1 + sin𝑥 cos𝑥 𝑑𝑥+ 0 𝜋2 cos𝑥 − sin𝑥1 + sin𝑥 cos𝑥 𝑑𝑥 2I= 0 𝜋2 sin𝑥 − cos𝑥 + cos𝑥 − sin𝑥1 + sin𝑥 cos𝑥 𝑑𝑥 2I= 0 𝜋2 01 + sin𝑥 cos𝑥 𝑑𝑥 2I=0 ∴ 𝐈=𝟎