Integration Full Chapter Explained - Integration Class 12 - Everything you need


Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.11, 10 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγ (2 logβ‘sinβ‘π₯ βlogβ‘sinβ‘2π₯ ) γ ππ₯ Let I1=β«_0^(π/2)βγ (2 logβ‘sinβ‘π₯ βlogβ‘sinβ‘2π₯ ) γ ππ₯ I1= β«_0^(π/2)βγ [2 logβ‘sinβ‘π₯ βπππ(2 sinβ‘γπ₯ cosβ‘π₯ γ )] γ ππ₯ I1= β«_0^(π/2)βγ [2 logβ‘sinβ‘π₯ βlogβ‘2βlogβ‘sinβ‘γπ₯βlogβ‘cosβ‘π₯ γ ] γ ππ₯ I1= β«_0^(π/2)βγ [logβ‘sinβ‘π₯ βπππ2βlogβ‘cosβ‘π₯ ] γ ππ₯ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlogβ‘2ππ₯ββ«_0^(π/2)βlogβ‘cosβ‘γπ₯ ππ₯γ γ Solving I2 I2=β«_0^(π/2)βlogβ‘cosβ‘γπ₯ ππ₯γ β΄ I2= β«_0^(π/2)βlogβ‘πππ (π/2βπ₯)ππ₯ I2=β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ Put the value of I2 in (1) i.e. I1 β΄ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlog 2γβ‘ππ₯ ββ«_π^(π /π)βπ₯π¨π β‘ππ¨π¬β‘γπ π πγ I1= β«_0^(π/2)βlogβ‘sinβ‘γπ₯ ππ₯γ ββ«_0^(π/2)βγlog 2γβ‘ππ₯ ββ«_π^(π /π)βπππβ‘π¬π’π§β‘γπ π πγ Using the property P4 : β«_0^πβγπ(π₯)ππ₯=γ β«_0^πβπ(πβπ₯)ππ₯ I1= β β«_0^(π/2)βγlog 2γβ‘ππ₯ I1= β log 2β«_0^(π/2)βππ₯ I1= β log 2[π₯]_0^(π/2) I1= β log 2[π/2β0] I1= β log 2Γπ/2 I1= logβ‘γγ (2)γ^(β1) γ [π/2] I1= π /π π₯π¨π (π/π) (π΄π logβ‘γ2 ππ ππππ π‘πππ‘γ ) (β("Using the property " @π logβ‘π = logβ‘ππ))
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important
Ex 7.11,8 Important
Ex 7.11, 9
Ex 7.11, 10 Important You are here
Ex 7.11, 11 Important
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15
Ex 7.11, 16
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 Important
Ex 7.11, 21 Important
About the Author