


Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3 Important
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important
Ex 7.11,8 Important You are here
Ex 7.11, 9
Ex 7.11, 10 Important
Ex 7.11, 11 Important
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15
Ex 7.11, 16 Important
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 (MCQ) Important
Ex 7.11, 21 (MCQ) Important
Last updated at March 23, 2023 by Teachoo
Ex 7.11, 8 By using the properties of definite integrals, evaluate the integrals : ∫_0^(𝜋/4)▒log(1+tan𝑥 ) 𝑑𝑥 Let I=∫_0^(𝜋/4)▒log〖 (1+tan𝑥 )〗 𝑑𝑥 ∴ I=∫_0^(𝜋/4)▒log[1+tan(𝜋/4−𝑥) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log[1+(tan 𝜋/4 −tan𝑥)/(1 +〖 tan〗 𝜋/4 . tan𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log[1+(1 − tan𝑥)/(1 + 1 . tan𝑥 )] 𝑑𝑥 Ex 7.11, 8 By using the properties of definite integrals, evaluate the integrals : ∫_0^(𝜋/4)▒log(1+tan𝑥 ) 𝑑𝑥 Let I=∫_0^(𝜋/4)▒log〖 (1+tan𝑥 )〗 𝑑𝑥 ∴ I=∫_0^(𝜋/4)▒log[1+tan(𝜋/4−𝑥) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log[1+(tan 𝜋/4 −tan𝑥)/(1 +〖 tan〗 𝜋/4 . tan𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log[1+(1 − tan𝑥)/(1 + 1 . tan𝑥 )] 𝑑𝑥 (tan(𝑎−𝑏)=tan〖𝑎 − 𝑡𝑎𝑛 𝑏〗/(1+〖 tan〗〖𝑎 tan𝑏 〗 )) (As tan(𝜋/4)=1) I=∫_0^(𝜋/4)▒log[(1 − tan𝑥 + 1 − tan𝑥)/(1 + tan𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log[2/(1 + tan𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒[log2 −log(1+tan𝑥 ) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log2 𝑑𝑥−∫_0^(𝜋/4)▒log(1+tan𝑥 ) 𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^(𝜋/4)▒log(1+tan𝑥 ) 𝑑𝑥+∫_0^(𝜋/4)▒log2 𝑑𝑥−∫_0^(𝜋/4)▒log(1+tan𝑥 ) 2I=∫_0^(𝜋/4)▒log2 𝑑𝑥 (Using log(𝑎/𝑏) =log𝑎−log𝑏) …(2) 2I=log〖 2〗 ∫_0^(𝜋/4)▒𝑑𝑥 I=log〖 2〗/2 [𝑥]_0^(𝜋/4) I=log2/2 [𝜋/4 − 0] I=log2/2×𝜋/4 𝑰=𝝅/𝟖 𝒍𝒐𝒈𝟐