Check sibling questions

Ex 7.11, 8 - Evaluate integral 0 -> pi log (1 + tan x) - Teachoo

Ex 7.11,8 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.11,8 - Chapter 7 Class 12 Integrals - Part 3

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 7.11, 8 By using the properties of definite integrals, evaluate the integrals : ∫_0^(𝜋/4)▒log⁡(1+tan⁡𝑥 ) 𝑑𝑥 Let I=∫_0^(𝜋/4)▒log⁡〖 (1+tan⁡𝑥 )〗 𝑑𝑥 ∴ I=∫_0^(𝜋/4)▒log⁡[1+tan⁡(𝜋/4−𝑥) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡[1+(tan⁡ 𝜋/4 −tan⁡𝑥)/(1 +〖 tan〗⁡ 𝜋/4 . tan⁡𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡[1+(1 − tan⁡𝑥)/(1 + 1 . tan⁡𝑥 )] 𝑑𝑥 Ex 7.11, 8 By using the properties of definite integrals, evaluate the integrals : ∫_0^(𝜋/4)▒log⁡(1+tan⁡𝑥 ) 𝑑𝑥 Let I=∫_0^(𝜋/4)▒log⁡〖 (1+tan⁡𝑥 )〗 𝑑𝑥 ∴ I=∫_0^(𝜋/4)▒log⁡[1+tan⁡(𝜋/4−𝑥) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡[1+(tan⁡ 𝜋/4 −tan⁡𝑥)/(1 +〖 tan〗⁡ 𝜋/4 . tan⁡𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡[1+(1 − tan⁡𝑥)/(1 + 1 . tan⁡𝑥 )] 𝑑𝑥 (tan(𝑎−𝑏)=tan⁡〖𝑎 − 𝑡𝑎𝑛 𝑏〗/(1+〖 tan〗⁡〖𝑎 tan⁡𝑏 〗 )) (As tan(𝜋/4)=1) I=∫_0^(𝜋/4)▒log⁡[(1 − tan⁡𝑥 + 1 − tan⁡𝑥)/(1 + tan⁡𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡[2/(1 + tan⁡𝑥 )] 𝑑𝑥 I=∫_0^(𝜋/4)▒[log⁡2 −log⁡(1+tan⁡𝑥 ) ] 𝑑𝑥 I=∫_0^(𝜋/4)▒log⁡2 𝑑𝑥−∫_0^(𝜋/4)▒log⁡(1+tan⁡𝑥 ) 𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^(𝜋/4)▒log⁡(1+tan⁡𝑥 ) 𝑑𝑥+∫_0^(𝜋/4)▒log⁡2 𝑑𝑥−∫_0^(𝜋/4)▒log⁡(1+tan⁡𝑥 ) 2I=∫_0^(𝜋/4)▒log⁡2 𝑑𝑥 (Using log⁡(𝑎/𝑏) =log⁡𝑎−log⁡𝑏) …(2) 2I=log⁡〖 2〗 ∫_0^(𝜋/4)▒𝑑𝑥 I=log⁡〖 2〗/2 [𝑥]_0^(𝜋/4) I=log⁡2/2 [𝜋/4 − 0] I=log⁡2/2×𝜋/4 𝑰=𝝅/𝟖 𝒍𝒐𝒈⁡𝟐

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.