Ex 7.10, 3 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important You are here
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.10, 3 By using the properties of definite integrals, evaluate the integrals : ∫_0^(𝜋/2)▒(sin^(3/2)𝑥 𝑑𝑥)/(sin^(3/2)𝑥 + cos^(3/2)𝑥 ) Let I=∫_0^(𝜋/2)▒〖(sin^(3/2) 𝑥)/(sin^(3/2) 𝑥 + cos^(3/2)𝑥 ) 𝑑𝑥〗 I= ∫_0^(𝜋/2)▒〖(sin^(3/2) (𝜋/2 − 𝑥))/(sin^(3/2) (𝜋/2 − 𝑥) + cos^(3/2) (𝜋/2 − 𝑥) ) 𝑑𝑥〗 ∴ I= ∫_0^(𝜋/2)▒〖cos^(3/2)𝑥/(cos^(3/2)𝑥 + sin^(3/2)𝑥 ) 𝑑𝑥〗 Adding (1) and (2) i.e. (1) + (2) I+I= sin^(3/2)𝑥/(sin^(3/2)𝑥 + cos^(3/2)𝑥 ) 𝑑𝑥+∫_0^(𝜋/2)▒〖cos^(3/2)𝑥/(cos^(3/2)𝑥 + sin^(3/2)𝑥 ) 𝑑𝑥〗 2I=∫_0^(𝜋/2)▒〖[(sin^(3/2)𝑥 + cos^(3/2)𝑥)/(sin^(3/2)𝑥 + cos^(3/2)𝑥 )] 𝑑𝑥〗 2I= ∫_0^(𝜋/2)▒〖 𝑑𝑥〗 I=1/2 ∫_0^(𝜋/2)▒〖 𝑑𝑥〗 I=1/2 [𝑥]_0^(𝜋/2) I= 1/2 [𝜋/2−0] I= 𝜋/4