
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 7.10
Ex 7.10, 2
Ex 7.10, 3 Important You are here
Ex 7.10, 4
Ex 7.10, 5 Important
Ex 7.10, 6
Ex 7.10,7 Important
Ex 7.10,8 Important
Ex 7.10, 9
Ex 7.10, 10 Important
Ex 7.10, 11 Important
Ex 7.10, 12 Important
Ex 7.10, 13
Ex 7.10, 14
Ex 7.10, 15
Ex 7.10, 16 Important
Ex 7.10, 17
Ex 7.10, 18 Important
Ex 7.10, 19
Ex 7.10, 20 (MCQ) Important
Ex 7.10, 21 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 7.10, 3 By using the properties of definite integrals, evaluate the integrals : 0 𝜋2 sin 32𝑥 𝑑𝑥 sin 32𝑥 + cos 32𝑥 Let I= 0 𝜋2 sin 32 𝑥 sin 32 𝑥 + cos 32𝑥 𝑑𝑥 I= 0 𝜋2 sin 32 𝜋2 − 𝑥 sin 32 𝜋2 − 𝑥 + cos 32 𝜋2 − 𝑥 𝑑𝑥 ∴ I= 0 𝜋2 cos 32𝑥 cos 32𝑥 + sin 32𝑥 𝑑𝑥 Adding (1) and (2) i.e. (1) + (2) I+I= sin 32𝑥 sin 32𝑥 + cos 32𝑥 𝑑𝑥+ 0 𝜋2 cos 32𝑥 cos 32𝑥 + sin 32𝑥 𝑑𝑥 2I= 0 𝜋2 sin 32𝑥 + cos 32𝑥 sin 32𝑥 + cos 32𝑥 𝑑𝑥 2I= 0 𝜋2 𝑑𝑥 I= 12 0 𝜋2 𝑑𝑥 I= 12 𝑥0 𝜋2 I= 12 𝜋2−0 I= 𝜋4