
Ex 7.11
Ex 7.11, 2
Ex 7.11, 3 Important
Ex 7.11, 4
Ex 7.11, 5 Important
Ex 7.11, 6
Ex 7.11,7 Important
Ex 7.11,8 Important
Ex 7.11, 9
Ex 7.11, 10 Important
Ex 7.11, 11 Important
Ex 7.11, 12 Important
Ex 7.11, 13
Ex 7.11, 14
Ex 7.11, 15
Ex 7.11, 16 Important
Ex 7.11, 17
Ex 7.11, 18 Important
Ex 7.11, 19
Ex 7.11, 20 (MCQ) Important You are here
Ex 7.11, 21 (MCQ) Important
Ex 7.11, 20 The value of β«_((β π)/2)^(π/2)βγ(π₯^3+π₯ πππ π₯+tan^5β‘γπ₯+1γ ) ππ₯γ (A) 0 (B) 2 (C) π (D) 1 β«_((βπ)/2)^(π/2)βγ (π₯^3+π₯ πππ π₯+tan^5β‘γπ₯+1γ ) ππ₯γ We know that β«_(βπ)^(+π)βγπ(π₯) ππ₯γ={β(0, ππ π(βπ₯)=βπ(π₯)@&2β«_0^πβγπ(π₯) ππ₯γ, ππ π(βπ₯)=π(π₯) )β€ Thus, our equation becomes β«_((β π)/2)^(π/2)βγ(π₯^3+π₯ πππ π₯+tan^5β‘γπ₯+1γ ) ππ₯γ = β«_0^(π/2)βγ0 ππ₯+β«_0^(π/2)βγ0 ππ₯+β«_0^(π/2)βγ0 ππ₯+πβ«_π^(π /π)βπ πγγγ = 2β«_0^(π/2)βππ₯ = 2 [π₯]_0^(π/2) = 2(π/2β0) =π Thus, correct option is C