Slide15.JPG

Slide16.JPG
Slide17.JPG
Slide18.JPG
Slide19.JPG


Transcript

Ex 7.9, 6 Evaluate the integrals using substitution ∫_0^(2 )▒𝑑𝑥/(𝑥 + 4 − 𝑥^2 ) We can write ∫_0^2▒〖𝑑𝑥/(𝑥 + 4 − 𝑥^2 )=∫_0^2▒𝑑𝑥/(−(𝑥^2 − 𝑥 − 4) )〗 =−∫_0^2▒𝑑𝑥/(𝑥^2 − 𝑥 − 4) =−∫_0^2▒𝑑𝑥/(𝑥^2 −2 × 1/2 × 𝑥 − 4) =−∫_0^2▒𝑑𝑥/(𝑥^2 −2 × 1/2 × 𝑥 + 1/2^2 − 1/2^2 − 4) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− 1/4 − 4) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− 17/4 ) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− (√17/4)^2 ) Let 𝑡=𝑥−1/2 Differentiating w.r.t.𝑥 𝑑𝑡/𝑑𝑥=1 𝑑𝑡=𝑑𝑥 When x varies from 0 to 2, then t varies from (−1)/2 to 3/2. Therefore, −∫_0^2▒〖𝑑𝑥/((𝑥 − 1/2)^2−(√17/2)^2 )=−∫_((−1)/2)^(3/2)▒𝑑𝑡/(𝑡 − (√17/2)^2 )〗 =−[1/2(√17/2) 𝑙𝑜𝑔|(𝑡 − √17/2)/(𝑡 + √17/2)|]_((−1)/( 2))^(3/2) =−1/√17 [𝑙𝑜𝑔|(3/2 − √17/2)/(3/2 + √17/2)|+𝑙𝑜𝑔|((−1)/( 2) − √17/2)/((−1)/( 2) + √17/2)|] =−1/√17 [𝑙𝑜𝑔|(3 − √17)/(3 + √17)|+𝑙𝑜𝑔|(−(1 + √17))/(−(1 − √17) )|] =−1/√17 𝑙𝑜𝑔|((3 − √17)/(3 + √17))/((1 + √17)/(1 − √17))| =−1/√17 𝑙𝑜𝑔|(3 − √17)/(3 + √17) ×(1 − √17)/(1 + √17)| =−1/√17 𝑙𝑜𝑔|(3+17 − 3√17 − √17)/(3 +17 + 3√17 + √17) | =−1/√17 𝑙𝑜𝑔|(20 − 4√17)/(20 + 4√17) | =−1/√17 𝑙𝑜𝑔|4(5 − √17)/4(5 + √17) | =−1/√17 𝑙𝑜𝑔|(5 − √17)/(5 + √17) | =1/√17 𝑙𝑜𝑔|(5 − √17)/(5 + √17) |^(−1) =1/√17 𝑙𝑜𝑔|(5 + √17)/(5 − √17)| =1/√17 𝑙𝑜𝑔|(5 + √17)/(5 − √17) ×(5 + √17)/(5 + √17)| =1/√17 𝑙𝑜𝑔|(5 − √17)^2/(5^2 − (√17)^2 ) | =1/√17 𝑙𝑜𝑔|(25 + 17 + 10√17)/(25 − 17) | =1/√17 𝑙𝑜𝑔|(42 + 10√17)/8 | =𝟏/√𝟏𝟕 𝒍𝒐𝒈|(𝟐𝟏 + 𝟓√𝟏𝟕)/𝟒 |

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.