Integration Full Chapter Explained - Integration Class 12 - Everything you need



Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.2, 34 Integrate β(tanβ‘π₯ )/sinβ‘γπ₯ cosβ‘π₯ γ Simplifying the function β(tanβ‘π₯ )/sinβ‘γπ₯ cosβ‘π₯ γ = β(tanβ‘π₯ )/(sinβ‘γπ₯ cosβ‘π₯ γ. cosβ‘π₯/cosβ‘π₯ ) = β(tanβ‘π₯ )/(sinβ‘π₯ . cos^2β‘π₯/cosβ‘π₯ ) = β(tanβ‘π₯ )/(cos^2β‘π₯ . (sin π₯)/cosβ‘π₯ ) Concept: There are two methods to deal with π‘ππβ‘π₯ (1) Convert into π ππβ‘π₯ and πππ β‘π₯ , then solve using the properties of π ππβ‘π₯ and πππ β‘π₯ . (2) Change into sec2x, as derivative of tan x is sec2 . Here, 1st Method is not applicable , so we have used 2nd Method . = β(tanβ‘π₯ )/(cos^2β‘π₯ . tanβ‘π₯ ) = (tanβ‘π₯ )^(1/2 β 1) Γ 1/cos^2β‘π₯ = (tanβ‘π₯ )^((β1)/2) Γ 1/cos^2β‘π₯ = (tanβ‘π₯ )^((β1)/2) Γ sec^2β‘π₯ β΄ β(tanβ‘π₯ )/sinβ‘γπ₯ cosβ‘π₯ γ " = " (tanβ‘π₯ )^((β1)/2) " Γ " sec^2β‘π₯ Step 2: Integrating the function β«1βγ β(tanβ‘π₯ )/sinβ‘γπ₯ cosβ‘π₯ γ γ . ππ₯ = β«1βγ (tanβ‘π₯ )^((β1)/2) " Γ " sec^2β‘π₯ γ. ππ₯" " Let tanβ‘π₯ = π‘ Differentiating both sides π€.π.π‘.π₯ sec^2β‘π₯=ππ‘/ππ₯ ππ₯=ππ‘/sec^2β‘π₯ Thus, our equation becomes β΄ β«1βγ (tanβ‘π₯ )^((β1)/2) " ." sec^2β‘π₯ γ. ππ₯" " = β«1βγ (π‘)^((β1)/2) " " . sec^2β‘π₯ γ. ππ‘/sec^2β‘π₯ " " = β«1βγπ‘^((β1)/2) . ππ‘γ = π‘^(β 1/2 +1)/(β 1/2 +1) + πΆ = π‘^(1/2)/(1/2) + πΆ = γ2π‘γ^(1/2)+ πΆ = 2βπ‘+ πΆ = πβ(πππ§β‘π )+ πͺ (Using π‘=π‘ππβ‘π₯)
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10
Ex 7.2, 11 Important
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important You are here
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37 Important
Ex 7.2, 38 Important
Ex 7.2, 39 Important
About the Author