Ex 7.2, 11 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.2
Ex 7.2, 2
Ex 7.2, 3 Important
Ex 7.2, 4
Ex 7.2, 5 Important
Ex 7.2, 6
Ex 7.2, 7 Important
Ex 7.2, 8
Ex 7.2, 9
Ex 7.2, 10 Important
Ex 7.2, 11 Important You are here
Ex 7.2, 12
Ex 7.2, 13
Ex 7.2, 14 Important
Ex 7.2, 15
Ex 7.2, 16
Ex 7.2, 17
Ex 7.2, 18
Ex 7.2, 19 Important
Ex 7.2, 20 Important
Ex 7.2, 21
Ex 7.2, 22 Important
Ex 7.2, 23
Ex 7.2, 24
Ex 7.2, 25
Ex 7.2, 26 Important
Ex 7.2, 27
Ex 7.2, 28
Ex 7.2, 29 Important
Ex 7.2, 30
Ex 7.2, 31
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Ex 7.2, 34 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.2, 37
Ex 7.2, 38 (MCQ) Important
Ex 7.2, 39 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.2, 11 (Method 1) Integrate the function: ๐ฅ/โ(๐ฅ + 4) , ๐ฅ>0 Step 1: Simplify the given function ๐ฅ/โ(๐ฅ + 4) = (๐ฅ + 4 โ 4)/โ(๐ฅ + 4) = (๐ฅ + 4)/โ(๐ฅ + 4) โ 4/โ(๐ฅ + 4) = (๐ฅ + 4)^(1/2 โ 1) โ 4(๐ฅ + 4)^(1/2) = (๐ฅ + 4)^(1/2) โ 4(๐ฅ + 4)^(โ 1/2) (Adding and Subtracting 4) Step 2: Integrating the function โซ1โใ" " ๐ฅ/โ(๐ฅ + 4)ใ . ๐๐ฅ = โซ1โ((๐ฅ + 4)^(1/2) " โ " ใ4 (๐ฅ + 4)ใ^(โ 1/2) ) . ๐๐ฅ = โซ1โ(๐ฅ + 4)^(1/2) . ๐๐ฅ โ 4โซ1โ(๐ฅ + 4)^(โ 1/2) . ๐๐ฅ = (๐ฅ + 4)^(1/2 + 1)/(1/2 + 1) โ (4 (๐ฅ + 4)^(โ 1/2 + 1))/(โ 1/2 + 1) + C = (๐ฅ + 4)^(3/2)/(3/2 ) โ (4 (๐ฅ + 4)^(1/2))/( 1/2) + C = 2/3 (๐ฅ+4)^(3/2) โ 4.2 (๐ฅ+4)^(1/2) + C = ใ2(๐ฅ+4)ใ^(1/2) ((๐ฅ + 4)/3 โ4) + ๐ถ = ใ2(๐ฅ+4)ใ^(1/2) ((๐ฅ + 4 โ12)/3) + ๐ถ = ใ2(๐ฅ+4)ใ^(1/2) ((๐ฅ โ 8))/3 + ๐ถ = ๐/๐ โ(๐ + ๐) (๐โ๐) + ๐ช (Taking ใ2(๐ฅ+4)ใ^(1/2) as common) Ex 7.2, 11 (Method 2) Integrate the function: ๐ฅ/โ(๐ฅ + 4) , ๐ฅ>0 Step 1: Let ๐ฅ+4=๐ก Differentiating both sides ๐ค.๐.๐ก.๐ฅ 1+0= ๐๐ก/๐๐ฅ 1= ๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก Step 2: Integrating the function โซ1โใ" " ๐ฅ/โ(๐ฅ + 4)ใ . ๐๐ฅ Putting ๐ก=๐ฅ+4 & ๐๐ฅ=๐๐ก = โซ1โ๐ฅ/โ๐ก . ๐๐ก = โซ1โ(๐ก โ 4)/โ๐ก . ๐๐ก = โซ1โ(๐ก โ 4)/โ๐ก . ๐๐ก = โซ1โ(๐ก/โ๐ก โ4/โ๐ก) ๐๐ก = โซ1โ๐ก/โ๐ก . ๐๐ก โ โซ1โ4/โ๐ก . ๐๐ก = โซ1โ๐ก^(1 โ 1/2) . ๐๐ก โ โซ1โใ4 . ๐ก^(โ 1/2) ใ. ๐๐ก = โซ1โ๐ก^(1/2) . ๐๐ก โ โซ1โใ4 . ๐ก^(โ 1/2) ใ. ๐๐ก (As ๐ฅ + 4=๐ก โ๐ฅ=๐กโ4) = ๐ก^(1/2 + 1)/(1/2 + 1) โ 4 ๐ก^(โ 1/2 + 1)/(โ 1/2 + 1) +๐ถ = (๐ก^(3/2) )/(3/2) โ 4 ๐ก^(1/2)/(1/2) +๐ถ = 2/3 ๐ก^(3/2) โ 4 . 2๐ก^(1/2) +๐ถ Taking 2/3 . ๐ก^(1/2) as common , we get = 2/3 . ๐ก^(1/2) (๐กโ4 . 3)+๐ถ = 2/3 . ๐ก^(1/2) (๐กโ12)+๐ถ Putting the value of ๐ก=๐ฅ+4 = 2/3 . (๐ฅ+4)^(1/2) (๐ฅ+4โ12)+๐ถ = ๐/๐ โ(๐+๐) (๐โ๐)+๐ช